What is integrability of (discrete) variational systems?

Yuri B. Suris

(Technische Universität Berlin)

Geometric Numerical Integration Workshop, Oberwolfach, 21.03.2016

Yuri B. Suris What is integrability of (discrete) variational systems?

Based on:

1. Yu. S. Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms. J. Geom. Mechanics, 2013, **5**, No. 3, p. 365–379.

2. R. Boll, M. Petrera, Yu. S. *What is integrability of discrete variational systems?* Proc. Royal Soc. A, 2014, **470**, No. 2162, 20130550, 15 pp.

3. A. Bobenko, Yu. S. *Discrete pluriharmonic functions as solutions of linear pluri-Lagrangian systems*, Commun. Math. Phys. 2015, **336**, No. 1, p. 199–215.

4. Yu. S., M. Vermeeren. On the Lagrangian structure of *integrable hierarchies*, arXiv:1510.03724 [math-ph].

According to the spirit of Geometric Numerical Integration, use *variational integrators* to discretize Lagrangian systems.

But how should one take into account *integrability* of the original system?

And what does it mean for a Lagrangian system (continuous or discrete) to be integrable?

Recent development started with:

 S. Lobb, F.W. Nijhoff. Lagrangian multiforms and multidimensional consistency, J. Phys. A, 2009, 42, 4540103

who discovered closedness of Lagrangian 2-form on solutions of systems of quad-equations (for a part of ABS list).

- Theory of pluriharmonic functions: f : C^m → R minimizes the Dirichlet functional E_Γ = ∫_Γ |(f ∘ Γ)_z|²dz ∧ dz̄ along any holomorphic curve Γ : C → C^m.
- Baxter's Z-invariance of solvable models of statistical mechanics: invariance of the partition function under elementary local transformations of the underlying graph.
- Variational symmetries (classical work by E. Noether).

Pluri-Lagrangian problem, discrete time, d = 1

A *discrete 1-form* \mathcal{L} is a skew-symmetric function on directed edges of \mathbb{Z}^m , depending on a field $x : \mathbb{Z}^m \to \mathcal{X}$ (where \mathcal{X} is a vector space):

 $\mathcal{L}(n, n + e_i) = \Lambda_i(x, x_i) \quad \Leftrightarrow$

A discrete curve Γ in \mathbb{Z}^m is a concatenation of edges \mathfrak{e}_k .

Action functional along Γ :

$$S_{\Gamma} = \sum_{k \in \mathbb{Z}} \mathcal{L}(\mathfrak{e}_k).$$

$$\mathcal{L}(n, n-e_i) = -\Lambda_i(x_{-i}, x).$$

Problem. Find functions $x : \mathbb{Z}^m \to \mathcal{X}$ delivering critical points for the functional S_{Γ} along *any* discrete curve Γ in \mathbb{Z}^m .

2D corner equations

Theorem. Function $x : \mathbb{Z}^m \to \mathcal{X}$ solves the pluri-Lagrangian problem for $\mathcal{L}(n, n + e_i) = \Lambda_i(x, x_i)$, iff the following *2D corner equations* are satisfied:

$$\frac{\partial \Lambda_i(x_{-i}, x)}{\partial x} + \frac{\partial \Lambda_j(x, x_j)}{\partial x} = 0,$$

$$\frac{\partial \Lambda_i(x_{-i}, x)}{\partial x} - \frac{\partial \Lambda_j(x_{-j}, x)}{\partial x} = 0,$$

$$\frac{\partial \Lambda_i(x, x_i)}{\partial x} - \frac{\partial \Lambda_j(x, x_j)}{\partial x} = 0$$

(four equations per elementary square σ_{ij}).

Yuri B. Suris What is integrability of (discrete) variational systems?

Definition. System of 2D corner equations is called *consistent*, if, for any square σ_{ij} , it has the minimal possible rank 2, i.e., if exactly two of these four equations are independent.

Remark. Standard (single-time) discrete EL equations are *consequences* of 2D corner equations:

If 2D corner equations are satisfied, then there exists $p : \mathbb{Z}^m \to T^* \mathcal{X}$ satisfying

$$p = rac{\partial \Lambda_i(x, x_i)}{\partial x} = -rac{\partial \Lambda_j(x_{-j}, x)}{\partial x}, \quad i, j = 1, \dots, m.$$

Theorem. 2D corner equations are consistent, iff symplectic maps $F_i : (x, p) \mapsto (x_i, p_i)$ defined by

$$p = rac{\partial \Lambda_i(x, x_i)}{\partial x}, \quad p_i = -rac{\partial \Lambda_i(x, x_i)}{\partial x_i},$$

commute, $F_i \circ F_j = F_j \circ F_i$.

Theorem. The following identities hold true on solutions of multi-time discrete Euler-Lagrange equations:

$$d\mathcal{L}(\sigma_{ij}) = \Lambda_i(x, x_i) + \Lambda_j(x_i, x_{ij}) - \Lambda_i(x_j, x_{ij}) - \Lambda_j(x, x_j) = \ell_{ij} = \text{const.}$$

Proof. Partial derivatives of the left-hand side with respect to each of x, x_i , x_j and x_{ij} vanish on solutions, according to the corner equations.

In particular, if all these constants ℓ_{ij} vanish, then the discrete 1-form \mathcal{L} is closed on solutions, so that the extremal value of the action functional S_{Γ} does not depend on the choice of the curve Γ connecting two given points in \mathbb{Z}^m .

Closedness of multi-time 1-form vs. spectrality

Let $F_{\lambda} : (x, p) \mapsto (\tilde{x}, \tilde{p})$ be a *1-parameter family* of commuting symplectic maps (*Bäcklund transformations*), with Lagrange function $\Lambda(x, \tilde{x}; \lambda)$.

For a second such map, we write $F_{\mu} : (x, p) \mapsto (\widehat{x}, \widehat{p})$.

From previous theorem:

$$\Lambda(\mathbf{x},\widetilde{\mathbf{x}};\lambda) + \Lambda(\widetilde{\mathbf{x}},\widehat{\widetilde{\mathbf{x}}};\mu) - \Lambda(\mathbf{x},\widehat{\mathbf{x}};\mu) - \Lambda(\widehat{\mathbf{x}},\widehat{\widetilde{\mathbf{x}}};\lambda) = \ell(\lambda,\mu).$$

Theorem. The discrete 1-form \mathcal{L} is closed on solutions of the multi-time Euler-Lagrange equations iff

 $\partial \Lambda(\mathbf{x}, \widetilde{\mathbf{x}}; \lambda) / \partial \lambda$

is a common integral of motion for all F_{μ} (*spectrality*; discovered on examples by Kuznetsov-Sklyanin (1998)).

Closedness of multi-time 1-form vs. spectrality (continued)

Proof. Due to skew-symmetry, $\ell(\lambda, \mu) = 0$ is equivalent to $\partial \ell(\lambda, \mu) / \partial \lambda = 0$, that is, to

$$\frac{\partial \Lambda(x,\widetilde{x};\lambda)}{\partial \lambda} - \frac{\partial \Lambda(\widehat{x},\widehat{\widetilde{x}};\lambda)}{\partial \lambda} = 0.$$

This is equivalent to saying that $\partial \Lambda(x, \tilde{x}; \lambda) / \partial \lambda$ is an integral of motion for F_{μ} .

Yuri B. Suris What is integrability of (discrete) variational systems?

Example: discrete time Toda lattice

Lagrange function:

$$\Lambda(x,\widetilde{x};\lambda) = \frac{1}{\lambda} \sum_{k=1}^{N} \left(e^{\widetilde{x}_k - x_k} - 1 - (\widetilde{x}_k - x_k) \right) - \lambda \sum_{k=1}^{N} e^{x_{k+1} - \widetilde{x}_k}.$$

Lagrangian equations of motion:

$$\frac{1}{\lambda^2}\left(e^{\widetilde{x}_k-x_k}-e^{x_k-\widetilde{x}_k}\right)=e^{\widetilde{x}_{k+1}-x_k}-e^{x_k-\widetilde{x}_{k-1}}.$$

Symplectic map $(x, p) \mapsto (\tilde{x}, \tilde{p})$,

$$F_{\lambda}: \begin{cases} \boldsymbol{p}_{k} = \frac{1}{\lambda} \left(\boldsymbol{e}^{\widetilde{x}_{k}-x_{k}} - 1 \right) + \lambda \boldsymbol{e}^{x_{k}-\widetilde{x}_{k-1}}, \\ \widetilde{\boldsymbol{p}}_{k} = \frac{1}{\lambda} \left(\boldsymbol{e}^{\widetilde{x}_{k}-x_{k}} - 1 \right) + \lambda \boldsymbol{e}^{x_{k+1}-\widetilde{x}_{k}}. \end{cases}$$

Integrability of discrete time Toda lattice

 \mathcal{L} closed on solutions \Leftrightarrow generating function of integrals of motion:

$$P(x,p;\lambda) = \sum_{k=1}^{N} (\widetilde{x}_k - x_k),$$

where \tilde{x}_k should be expressed through p_k with the help of

$$e^{\widetilde{x}_k-x_k} = 1 + \lambda p_k - \lambda^2 e^{x_k-\widetilde{x}_{k-1}}.$$

One finds:

$$e^{P} = \operatorname{tr} U_{N}(x, p; \lambda) \cdots U_{2}(x, p; \lambda) U_{1}(x, p; \lambda),$$

where

$$U_k(x,p;\lambda) = \begin{pmatrix} 1+\lambda p_k & -\lambda^2 e^{x_k} \\ e^{-x_k} & 0 \end{pmatrix}.$$

A long-standing problem: integrability of variational systems. Solution: along the discretization path.

Equations are of elliptic type (à la Laplace equation).

Discrete hyperbolic systems: integrability = multidimensional consistency

3D consistency of quad-equations $Q(x, x_i, x_j, x_{ij}) = 0$:

- Discrete analog of commuting flows
- Zero curvature representation and Bäcklund transformations
- Equation can be imposed on arbitrary quad-graphs realized as quad-surfaces in Z^m

Difficulty: notions *evolution* and *commutativity* seem to be alien for elliptic systems. Difficult to come up with anything like 3D consistency for discrete elliptic (Laplace-type) systems.

Pluri-Lagrangian problem, discrete space-time, d = 2

Main idea: require solutions to be extremals not only on \mathbb{Z}^2 but on arbitrary quad-surfaces in \mathbb{Z}^m .

A *discrete 2-form* \mathcal{L} is a skew-symmetric function on oriented squares $\sigma_{ij} = (n, n + e_i, n + e_i + e_j, n + e_j)$ of \mathbb{Z}^m :

$$\mathcal{L}(\sigma_{ij}) = \Lambda_{ij}(\mathbf{x}, \mathbf{x}_i, \mathbf{x}_{ij}, \mathbf{x}_j) = -\mathcal{L}(\sigma_{ji}).$$

For a *discrete quad-surface* Σ in \mathbb{Z}^m , set: $S_{\Sigma} = \sum_{\sigma_{ij} \subset \Sigma} \mathcal{L}(\sigma_{ij})$.

Problem. Find functions $x : \mathbb{Z}^m \to \mathcal{X}$ delivering critical points for the action functional S_{Σ} for *any* quad-surface Σ in \mathbb{Z}^m .

3D corner equations

Theorem. For a given discrete 2-form $\mathcal{L}(\sigma_{ij}) = \Lambda_{ij}(x, x_i, x_{ij}, x_j)$, denote

$$\mathcal{S}^{ijk} = \mathcal{dL}(\sigma_{ijk}) = \Delta_k \mathcal{L}(\sigma_{ij}) + \Delta_i \mathcal{L}(\sigma_{jk}) + \Delta_j \mathcal{L}(\sigma_{ki})$$

Function $x : \mathbb{Z}^m \to \mathcal{X}$ solves the pluri-Lagrangian problem for \mathcal{L} , iff the following *3D corner equations* are satisfied:

$$\frac{\partial S^{ijk}}{\partial x} = 0, \quad \frac{\partial S^{ijk}}{\partial x_i} = 0, \quad \frac{\partial S^{ijk}}{\partial x_j} = 0, \quad \frac{\partial S^{ijk}}{\partial x_k} = 0,$$
$$\frac{\partial S^{ijk}}{\partial x_{ij}} = 0, \quad \frac{\partial S^{ijk}}{\partial x_{jk}} = 0, \quad \frac{\partial S^{ijk}}{\partial x_{ik}} = 0, \quad \frac{\partial S^{ijk}}{\partial x_{ijk}} = 0,$$

(eight equations per elementary cube σ_{ijk}). Symbolically: $\delta(d\mathcal{L}) = 0$, where δ stands for the "vertical" differential.

3D corners: elementary building blocks of quad-surfaces

Any vertex star in any quad-surface can be built from 3D corners (with extension into an extra dimension, if necessary).

3D corner equations: "elementary particles" for integrable Laplace type equations

Definition. System of corner equations is called *consistent*, if, for any cube σ_{ijk} , it has the minimal possible rank 2, i.e., if exactly two of these eight equations are independent.

Theorem. For any triple i, j, k, action S^{ijk} over an elementary cube is constant on solutions of corner equations:

$$d\mathcal{L}(\sigma_{ijk}) = S^{ijk}(x, \dots, x_{ijk}) = c^{ijk} = \text{const}$$

(mod
$$\partial S^{ijk}/\partial x = 0, \ldots, \partial S^{ijk}/\partial x_{ijk} = 0$$
).

Most interesting case: all $c^{ijk} = 0$, i.e., \mathcal{L} closed on solutions of corner equations.

Particular case: 3-point 2-form

For ABS equations:

 $\mathcal{L}(\sigma_{ij}) = \mathcal{L}(\mathbf{x}, \mathbf{x}_i, \mathbf{x}_j; \alpha_i, \alpha_j) = \mathcal{L}(\mathbf{x}, \mathbf{x}_i; \alpha_i) - \mathcal{L}(\mathbf{x}, \mathbf{x}_j; \alpha_j) - \Lambda(\mathbf{x}_i, \mathbf{x}_j; \alpha_i, \alpha_j).$

For such \mathcal{L} , action $d\mathcal{L}(\sigma_{ijk}) = S^{ijk}$ depends neither on x nor on x_{ijk} :

Corner equations for a 3-point 2-form

four-leg, five-point equations:

$$\psi(\mathbf{x}_i, \mathbf{x}_{ij}; \alpha_j) - \psi(\mathbf{x}_i, \mathbf{x}_{ik}; \alpha_k) - \phi(\mathbf{x}_i, \mathbf{x}_k; \alpha_i, \alpha_k) + \phi(\mathbf{x}_i, \mathbf{x}_j; \alpha_i, \alpha_j) = \mathbf{0},$$

$$\psi(\mathbf{x}_{ij}, \mathbf{x}_i; \alpha_j) - \psi(\mathbf{x}_{ij}, \mathbf{x}_j; \alpha_i) - \phi(\mathbf{x}_{ij}, \mathbf{x}_{ik}; \alpha_j, \alpha_k) + \phi(\mathbf{x}_{ij}, \mathbf{x}_{jk}; \alpha_i, \alpha_k) = \mathbf{0}.$$

Here, we introduced the notation

$$\psi(\mathbf{x},\mathbf{y};\alpha) = \frac{\partial L(\mathbf{x},\mathbf{y};\alpha)}{\partial \mathbf{x}}, \quad \phi(\mathbf{x},\mathbf{y};\alpha,\beta) = \frac{\partial \Lambda(\mathbf{x},\mathbf{y};\alpha,\beta)}{\partial \mathbf{x}}.$$

Yuri B. Suris What is integrability of (discrete) variational systems?

From corner equations to planar Laplace type equations

Theorem. For the discrete 2-forms \mathcal{L} for quad-equations of the ABS list, the corresponding systems of 3D corner equations are consistent, as well. Moreover, the 2-form \mathcal{L} is closed on solutions of 3D corner equations.

Relation between closedness of \mathcal{L} and integrability:

Theorem. System of 3D corner equations for \mathcal{L} admits parameter-dependent families of *conservation laws*: $\Delta_j F_{ik} = \Delta_k F_{ij}$, where

$$F_{ij} = \frac{\partial L(x, x_i, \alpha_i)}{\partial \alpha_i} - \frac{\partial \Lambda(x_i, x_j, \alpha_i - \alpha_j)}{\partial \alpha_i}$$

(d = 2 analog of spectrality).

Proof: Differentiate $S^{ijk} = 0$ w.r.t. α_i .

We propose the notion of pluri-Lagrangian systems as integrability of discrete (and continuous) variational systems.

- ► (Almost) closedness of the Lagrangian form (*dL* = const) on solutions of the pluri-Lagrangian system built-in.
- ► Closedness of the Lagrangian form (*dL* = 0) on solutions is related to existence of integrals of motion for *d* = 1 (resp. conservation laws for *d* = 2).
- Classification of pluri-Lagrangian systems looks promising.