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Controlled thermonuclear fusion
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» Fusion conditions:
nTTE large enough.

» T ~ 100 million °C

fully ionized gas=plasma.

» Magnetic confinement (ITER)

» Inertial confinement
> by laser (LMJ, NIF)
> by heavy ions




The ITER project W

International project involving European Union, China, India, Japan,
South Korea, Russia and United States aiming to prove that magnetic
fusion is viable source for energy.
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Combutibles primaires  Déchets de combustion




Experimental installations at IPP

Tokamak Stellarator

ASDEX Upgrade, Garching
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Modelling of Tokamak plasmas W

v

A plasma is a collection of different species of charged particles.

» Basic model is Newton's law with pairwise interaction between
particles which is largely dominated by electromagnetic force. Too
many particles n ~ 109m~3, numerically intractable.

» First reduced model: Kinetic Vlasov-Maxwell (4Landau collisions)
» Second reduced model: multi-fluid Euler-Maxwell
» Third reduced model: single fluid MHD




Turbulent transport in magnetized plasma W

» Plasma not very collisional and far from fluid state
= Kinetic description necessary. Fluid and kinetic simulations of
turbulent transport yield very different results.

» Vlasov (6D phase space) coupled to 3D Maxwell

g—i—v-vxf—l—i(E—l—va)-va:O.
ot m

» Toroidal geometry

Toroidal
Direction

Magnetic
field line
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Numerical issues with 6D Vlasov-Maxwell W

» Posed in 6D phase space! Dimension reduction if possible would
help.

> Large magnetic field imposes very small time step to resolve the
rotation of particles along field lines.
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» Physics of interest is low frequency. Remove light waves: Darwin
instead of Maxwell.

» Debye length small compared to ion Larmor radius. Quasi-neutrality
assumption ne = n; needs to be imposed instead of Poisson
equation for electric field.

10



Towards a reduced model

> Scale separation: fast motion around magnetic field lines can be
averaged out.

> Idea: separate motion of the guiding centre from rotation by a
change of coordinates.

» For constant magnetic field can be done by change of
coordinates: X = x — p; guiding centre + kind of
cylindrical coordinates in v: Vi, b= %mvﬁ/wc, 0.

» Mixes position and velocity variables.

> Perturbative model for slowly varying magnetic field.
> Several small parameters
» gyroperiod, Debye length
» Magnetic field in tokamak varies slowly: g = |[VB/B|
» Time dependent fluctuating fields are small.
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Geometric asymptotic reduction

Long time magnetic confinement of charged particles depends on
existence of first adiabatic invariant (Northrop 1963):

= %mvﬁ_/wc.

Geometric reduction based on making this adiabatic invariant an
exact invariant.

Two steps procedure:

» Start from Vlasov-Maxwell particle Lagrangian and reduce it using Lie
transforms such that it is independent of gyromotion up to second
order

» Plug particle Lagrangian into Vlasov-Maxwell field theoretic action
and perform further reduction.

End product is gyrokinetic field theory embodied in Lagrangian.
Symmetries of Lagrangian yield exact conservation laws thanks to
Noether Theorem.
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Historical notes

v

Perturbative analysis of Vlasov:
» linear: Rutherford & Frieman 68, Taylor & Hastie 68, Catto 78
» non linear: Frieman & Chen 82.

Hamiltonian methods:

> electrostatic: Littlejohn 82, 83, Dubin 83
» Electromagnetic: Brizard, Lee, Hahm 88, Hahm 88

v

v

Gyrokinetic field theory:

» Lagrangian setting: Sugama 2000, Scott & Smirnov 2010
» Eulerian setting: Brizard 2000

Review:

» Brizard & Hahm 2007
» Krommes 2012, provides a non technical review of the topic.

v
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Motion of a particle in an electromagnetic field

» Consider given electromagnetic field defined by scalar potential ¢
and vector potential A such that

oA

E=———-V¢, B=VxA.

ot ¢
The non relativistic equations of motion of a particle in this
electromagnetic field is obtained from Lagrangian (here phase space
Lagrangian p - g — H in non canonical variables for later use)

1
Ls(x,v, %, t) = (mev + e;A) - X% — (Emsv2 + es0).

where p = mgv + esA(t,x), H = mgv?/2 + es¢(t,x) are canonical
momentum and hamiltonian.
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Abstract geometric context W

» Lagrangian becomes Poincaré-Cartan 1-form
vy=p-dx— Hdt

with p = mev + esA(t,x), H = msv?/2 + esé(t, x).
» w = dr is the Lagrange 2-form, which is non degenerate and so a
symplectic form. lts components define the the Lagrange tensor 2.
» Then J = Q71 is the Poisson tensor which defines the Poisson
bracket
{F,G}=VFTJVG

» The equations of motion can then be expressed from the Poisson
matrix and the hamiltonian

dZ
T JVH.

» Lagrangian contains all necessary information and this structure is
preserved by change of coordintates.

15



Derivation of gyrokinetic particle Lagrangian

>

Gyrokinetic particle Lagrangian obtained from Vlasov-Maxwell
particle Lagrangian by performing a change of variables, such that
lowest order terms independent of gyrophase.

This is obtained systematically order by order by the Lie transform
method (Dragt & Finn 1976, Cary 1981) on the Lagrangian

. . 1
LS(X,V,X, t) = (msV + esA) X2 — (Ems|v|2 + esd))‘

Not a unique solution.
1. v) formulation. Transform Lagrangian as is keeping fluctuation A in
symplectic form.
2. py formulation, pj = v; + (e/m)A|. Fluctuating A in hamiltonian.
3. u) formulation. Split fluctuating A into two parts. One of them goes
into Hamiltonian. Includes others as special case.
Gyrokinetic codes choose between v (symplectic) and pj
(hamiltonian) formulation.

Both involve severe numerical drawbacks.
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The mixed gyrokinetic particle Lagrangian W

> Split Ay = A + Afl. Define u = v| + (e/m)Af

» The gyrokinetic Lagrangian for a single particle always in the form

L=A"-X+pf—H

with A* = Ag + ((ms/es)uH + <Aﬁ>) b, b=B/B,
1
H = Ho+ Hi + Hz, Ho= EmsUﬁ +uB, Hi={(¢— U||Aﬁ>

where

(W) (x, 1) def % %w(x + p) da.

» Perpendicular component of fluctuating vector potential A
neglected.
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The Vlasov equation

» Consider a population of particles evolving with

dX dv e
» Their distribution function f, or more precisely probability density in

phase space (up to normalisation), satisfies the Vlasov equation

of
a%—v-vxf%—F-va:O.

» Given an initial distribution fy, the distribution at time t is
equivalently characterised by the solution of the Vlasov equation or
the particle positions f(t,z) = f,(X(0; z, t), V(0; z, t)),
where we denote by z = (x, v).
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Action principle for the Vlasov-Maxwell equations W

> Field theory is action principle from which Vlasov-Maxwell equations
are derived.

» Action proposed by Low (1958) with a Lagrangian formulation for
Vlasov, i.e. based on characteristics.

» Based on particle Lagrangian for species s, Ls.

» Such an action, splitting between particle and field Lagrangian,
using standard non canonical coordinates, reads:

S = Z/fs(207t0)Ls(x(ZOa to; t), X(zo, to; t), t) dzo dt
S

— —|“dxdt — — Al dxdt.
+ 5 /]V¢+ 8t| X o |V x AJ7 dx

Particle distribution functions £ taken at initial time.
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The electromagnetic gyrokinetic field theory W

» Gyrokinetics is a low frequency approximation.
Darwin approximation: 0;A removed from Lagrangian.

» Quasi-neutrality approximation: |V¢|? removed:
. 1
S = /fsz,t A*-X—Hdz—/Vx A;b)|? dx.
ES: (20, to)( ) dzo 2 [V x (Ab)|

» Additional approximation made to avoid fully implicit formulation:
Second order term in Lagrangian linearised (consistent with
ordering) by replacing full f by background fy

S= Z/fs(Zo, to)(A* . X — Hy — Hl)dZO

1
— Z/fM,S(ZO)Hz dzp — o™ / |V x (A||b)|2dx.
S IJ/O
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Derivation of the gyrokinetic equations from the ac- W
tion principle

We denote by B* = V x A* and B”
» Setting 25 57 =0 i=1,2,3,4 yields:

-b.

. ) 1 .
B*xR=—"Pb—-V(H+H), b-R=
q q

» Solving for R and PH we get the equations of motion of the
gyrocenters:
1 9(Ho + Hy) 1

: : 1
BiR=— B*—=V(Ho+H1)xb, BjPj = —=V(Ho+H)-B".
m op q m

» These are the characteristics of the gyrokinetic Vlasov equation

of . . Of
— +R-Vf+P— =0.
9t +R-Vf+ P o, 0
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Gyrokinetic Ampere and Poisson equations

>

The gyrokinetic Poisson (or rather quasi-neutrality) equation is
obtained by variations with respect to ¢

/e Srinsog 4. Vade— [anid)ax, v
kg T;

The gyrokinetic Ampére equation is obtained by variations with

respect to Aj:

[10gZ ns
/VLA” VLA|dx+Z/ ST (AR (Af) dx

/_j||< H> dX, VAﬁ
where A = A|| + AH and AH is related to ¢ by the constraint
i Vé-b=0.
ot
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Conserved quantities W

» Symmetries of Lagrangian yield invariants using Noether's theorem

» Time translation: Conservation of energy:

= dWod Vo, Hs — dV”
Z/ bdVofeo(zo)He — | kBT

+ /dva”y%
240

» Axisymmetry of background vector potential:
Conservation of total canonical angular momentum:

,Pg; = Z es/dWOdVOfs,O(ZO)A;LP
s
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Discretisation of the action W

» Our action principles rely on a Lagrangian (as opposed to Eulerian)
formulation of the Vlasov equation: the functionals on which our
action depends are the characteristics of the Vlasov equations X and
V in addition to the scalar and vector potentials ¢ and A.

> A natural discretisation relies on:

» A Monte-Carlo discretisation of the phase space at the initial time:
select randomly some initial positions of the particles.

» Approximate the continuous function spaces for ¢ and A by discrete
subspaces.

» Yields a discrete action where a finite (large) number of scalars are
varied: the particle phase space positions and coefficients in Finite
Element basis.

» When performing the variations, we get the classical Particle In Cell
Finite Element Method (PIC-FEM).

25



FEEC needed for Maxwell's equations W

> In order to preserve the continuous structure at the discrete level,
the different unknowns ¢, A, E and B need to be chosen in
compatible Finite Element spaces.

» This is provided by Finite Element Exterior Calculus (FEEC)
introduced by Arnold, Falk and Winther.

» Continuous and discrete complexes are the following

grad curl div
HY(Q) — H(curl,Q) — H(div,Q) — L3(Q)
1Mo 41 L2 113
Vo — Vi — Vs — V3

» Faraday and div B = 0 verified strongly as

1
1E:—V°¢—8a?, 2B =V x A

» Ampere and Gauss’ law obtained from variations of FE coefficients.
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PIC Finite Element approximation of the Action W

» Compatible FE discretisation:
on € Vo, AnEp€ V1,Bpe Vo

» Particle discretisation of f ~ Y, wid(x — xx(t))0(v — vi(t))

» Vlasov-Maxwell action becomes:

N
Sn.h = ZWkLs( (zko0, toi t), Z(zk 0. to; t /|Za,(t )V XA} (x)|? dx
=1

2

N,
g dl
+;/ ’Z:;qbf(t)V/\o Z : dx.

> Z(z4 0, to; t) will be traditionally denoted by z,(t) is the phase space
position at time t of the particle that was at z, ¢ at time tp.
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PIC-FE discretisation of the action W

» We know have a discrete action depending on particle positions and
Finite Element degrees of freedom, which define the generalised
coordinates

SN,h[xla"‘7XN7).(17"‘7).(N7v17"‘7VN7¢17‘"7¢Ng7‘917"'7aNg]

» The discrete electric and magnetic fields are defined exactly as in
the continuous case from the discrete potentials thanks to the
compatible Finite Element spaces

O0Ap

_ A2 _
T Bh_Zb,/\,(x)—VxAh.

En=) el (x)=—Ve,—

> It immediately follows like in the continuous case the discrete

Faraday equation
0By,
—_— E,=0.
ot 4+ V x h 0
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Time advance via Hamiltonian splitting W

» Following the prescription of Crouseilles-Einkemmer-Faou a
Hamiltonian splitting can be performed, treating the three terms of
the Hamiltonian separately

1 1 1
H= §vl\/lpv + Eel\/lle + Ebl\/lgb = Hp, + He + Hp.
» Split and solve successively (2(u) Poisson matrix)
% =Q(u)VH;, i=p,eb
» Lie-Trotter splitting (first order), Strang splitting (second order) or
even higher order.

» Exact solution possible for H, and H,.

» For H, split further between the three components. Other
possibility: use variational integrator
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Comments and related work W

» Variational FE-PIC codes along with control variates for noise
reduction at the base of success of PIC simulations of Tokamak
turbulence with ORB5 family of codes.

NEMORB: AUG 26754 ( Pictu re: A. Botti no)

> A lot of recent effort towards variational or Hamiltonian
discretisation of Vlasov (or related)

> First ref: Lewis, Energy conserving numerical approximations of
Vlasov plasmas, JCP 1970

» Shadwick, Stamm, Estatiev, Variational formulation of macro-particle
plasma simulation algorithms (Phys Plasmas 2014)

» Squire, Qin, Tang, Geometric integration of the Vlasov-Maxwell
system with a variational particle-in-cell scheme, (Phys Plasmas 2012)
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