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Controlled thermonuclear fusion

I Fusion conditions:
nT τE large enough.

I T ≈ 100 million oC
fully ionized gas=plasma.

I Magnetic confinement (ITER)
I Inertial confinement

I by laser (LMJ, NIF)
I by heavy ions
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The ITER project

International project involving European Union, China, India, Japan,
South Korea, Russia and United States aiming to prove that magnetic
fusion is viable source for energy.
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Experimental installations at IPP

Wendelstein 2-A,  
Deutsches Museum, München 

Wendelstein 7-X,  Greifswald 

Both confinement types at IPP: Tokamak and Stellarator 

Tokamak                                                    Stellarator 

ASDEX Upgrade, Garching 
Wendelstein 7-X,  Greifswald 
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Modelling of Tokamak plasmas

I A plasma is a collection of different species of charged particles.

I Basic model is Newton’s law with pairwise interaction between
particles which is largely dominated by electromagnetic force. Too
many particles n ≈ 1019m−3, numerically intractable.

I First reduced model: Kinetic Vlasov-Maxwell (+Landau collisions)

I Second reduced model: multi-fluid Euler-Maxwell

I Third reduced model: single fluid MHD
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Turbulent transport in magnetized plasma

I Plasma not very collisional and far from fluid state
⇒ Kinetic description necessary. Fluid and kinetic simulations of
turbulent transport yield very different results.

I Vlasov (6D phase space) coupled to 3D Maxwell

∂f

∂t
+ v · ∇x f +

q

m
(E + v × B) · ∇v f = 0.

I Toroidal geometry
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Numerical issues with 6D Vlasov-Maxwell

I Posed in 6D phase space! Dimension reduction if possible would
help.

I Large magnetic field imposes very small time step to resolve the
rotation of particles along field lines.

I Physics of interest is low frequency. Remove light waves: Darwin
instead of Maxwell.

I Debye length small compared to ion Larmor radius. Quasi-neutrality
assumption ne = ni needs to be imposed instead of Poisson
equation for electric field.
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Towards a reduced model

I Scale separation: fast motion around magnetic field lines can be
averaged out.

I Idea: separate motion of the guiding centre from rotation by a
change of coordinates.

I For constant magnetic field can be done by change of
coordinates: X = x− ρL guiding centre + kind of
cylindrical coordinates in v: v‖, µ = 1

2mv2
⊥/ωc , θ.

I Mixes position and velocity variables.

I Perturbative model for slowly varying magnetic field.
I Several small parameters

I gyroperiod, Debye length
I Magnetic field in tokamak varies slowly: εB = |∇B/B|
I Time dependent fluctuating fields are small.
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Geometric asymptotic reduction

I Long time magnetic confinement of charged particles depends on
existence of first adiabatic invariant (Northrop 1963):
µ = 1

2mv2⊥/ωc .

I Geometric reduction based on making this adiabatic invariant an
exact invariant.

I Two steps procedure:
I Start from Vlasov-Maxwell particle Lagrangian and reduce it using Lie

transforms such that it is independent of gyromotion up to second
order

I Plug particle Lagrangian into Vlasov-Maxwell field theoretic action
and perform further reduction.

I End product is gyrokinetic field theory embodied in Lagrangian.
Symmetries of Lagrangian yield exact conservation laws thanks to
Noether Theorem.
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Historical notes

I Perturbative analysis of Vlasov:
I linear: Rutherford & Frieman 68, Taylor & Hastie 68, Catto 78
I non linear: Frieman & Chen 82.

I Hamiltonian methods:
I electrostatic: Littlejohn 82, 83, Dubin 83
I Electromagnetic: Brizard, Lee, Hahm 88, Hahm 88

I Gyrokinetic field theory:
I Lagrangian setting: Sugama 2000, Scott & Smirnov 2010
I Eulerian setting: Brizard 2000

I Review:
I Brizard & Hahm 2007
I Krommes 2012, provides a non technical review of the topic.
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Motion of a particle in an electromagnetic field

I Consider given electromagnetic field defined by scalar potential φ
and vector potential A such that

E = −∂A
∂t
−∇φ, B = ∇× A.

I The non relativistic equations of motion of a particle in this
electromagnetic field is obtained from Lagrangian (here phase space
Lagrangian p · q̇− H in non canonical variables for later use)

Ls(x, v, ẋ, t) = (msv + esA) · ẋ2 − (
1

2
msv

2 + esφ).

where p = msv + esA(t, x), H = msv
2/2 + esφ(t, x) are canonical

momentum and hamiltonian.
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Abstract geometric context

I Lagrangian becomes Poincaré-Cartan 1-form

γ = p · dx− H dt

with p = msv + esA(t, x), H = msv
2/2 + esφ(t, x).

I ω = dγ is the Lagrange 2-form, which is non degenerate and so a
symplectic form. Its components define the the Lagrange tensor Ω.

I Then J = Ω−1 is the Poisson tensor which defines the Poisson
bracket

{F ,G} = ∇FT J∇G
I The equations of motion can then be expressed from the Poisson

matrix and the hamiltonian

dZ

dt
= J∇H.

I Lagrangian contains all necessary information and this structure is
preserved by change of coordintates.
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Derivation of gyrokinetic particle Lagrangian

I Gyrokinetic particle Lagrangian obtained from Vlasov-Maxwell
particle Lagrangian by performing a change of variables, such that
lowest order terms independent of gyrophase.

I This is obtained systematically order by order by the Lie transform
method (Dragt & Finn 1976, Cary 1981) on the Lagrangian

Ls(x, v, ẋ, t) = (msv + esA) · ẋ2 − (
1

2
ms |v|2 + esφ).

I Not a unique solution.
1. v‖ formulation. Transform Lagrangian as is keeping fluctuation A in

symplectic form.
2. p‖ formulation, p‖ = v‖ + (e/m)A‖. Fluctuating A‖ in hamiltonian.
3. u‖ formulation. Split fluctuating A‖ into two parts. One of them goes

into Hamiltonian. Includes others as special case.

I Gyrokinetic codes choose between v‖ (symplectic) and p‖
(hamiltonian) formulation.

I Both involve severe numerical drawbacks.
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The mixed gyrokinetic particle Lagrangian

I Split A‖ = As
‖ + Ah

‖. Define u‖ = v‖ + (e/m)Ah
‖

I The gyrokinetic Lagrangian for a single particle always in the form

L = A∗ · Ẋ + µθ̇ − H

with A∗ = A0 +
(

(ms/es)u‖ + 〈As
‖〉
)
b, b = B/B,

H = H0 + H1 + H2, H0 =
1

2
msu

2
‖ + µB, H1 = 〈φ− u‖A

h
‖〉

where

〈ψ〉(x, µ)
def
=

1

2π

∮
ψ(x + ρ) dα.

I Perpendicular component of fluctuating vector potential A
neglected.
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The Vlasov equation

I Consider a population of particles evolving with

dX

dt
= V,

dV

dt
= F =

e

m
(E + V × B).

I Their distribution function f , or more precisely probability density in
phase space (up to normalisation), satisfies the Vlasov equation

∂f

∂t
+ v · ∇x f + F · ∇v f = 0.

I Given an initial distribution f0, the distribution at time t is
equivalently characterised by the solution of the Vlasov equation or
the particle positions f (t, z) = f0(X (0; z, t),V (0; z, t)),
where we denote by z = (x, v).
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Action principle for the Vlasov-Maxwell equations

I Field theory is action principle from which Vlasov-Maxwell equations
are derived.

I Action proposed by Low (1958) with a Lagrangian formulation for
Vlasov, i.e. based on characteristics.

I Based on particle Lagrangian for species s, Ls .

I Such an action, splitting between particle and field Lagrangian,
using standard non canonical coordinates, reads:

S =
∑
s

∫
fs(z0, t0)Ls(X(z0, t0; t), Ẋ(z0, t0; t), t) dz0 dt

+
ε0
2

∫
|∇φ+

∂A

∂t
|2 dx dt − 1

2µ0

∫
|∇ × A|2 dxdt.

Particle distribution functions fs taken at initial time.
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The electromagnetic gyrokinetic field theory

I Gyrokinetics is a low frequency approximation.
Darwin approximation: ∂tA removed from Lagrangian.

I Quasi-neutrality approximation: |∇φ|2 removed:

S =
∑
s

∫
fs(z0, t0)(A∗ · Ẋ− H) dz0 −

1

2µ0

∫
|∇ × (A‖b)|2 dx.

I Additional approximation made to avoid fully implicit formulation:
Second order term in Lagrangian linearised (consistent with
ordering) by replacing full f by background fM

S =
∑
s

∫
fs(z0, t0)(A∗ · Ẋ− H0 − H1)dz0

−
∑
s

∫
fM,s(z0)H2 dz0 −

1

2µ0

∫
|∇ × (A‖b)|2 dx.
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Derivation of the gyrokinetic equations from the ac-
tion principle

We denote by B∗ = ∇× A∗ and B∗‖ = B∗ · b.

I Setting δS
δZi

= 0, i = 1, 2, 3, 4 yields:

B∗ × Ṙ = −m

q
Ṗ‖b−

1

q
∇(H0 + H1), b · Ṙ =

1

m

∂(H0 + H1)

∂p‖
.

I Solving for Ṙ and Ṗ‖ we get the equations of motion of the
gyrocenters:

B∗‖ Ṙ =
1

m

∂(H0 + H1)

∂p‖
B∗−1

q
∇(H0+H1)×b, B∗‖ Ṗ‖ = − 1

m
∇(H0+H1)·B∗.

I These are the characteristics of the gyrokinetic Vlasov equation

∂f

∂t
+ Ṙ · ∇f + Ṗ‖

∂f

∂p‖
= 0.
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Gyrokinetic Ampere and Poisson equations

I The gyrokinetic Poisson (or rather quasi-neutrality) equation is
obtained by variations with respect to φ∫

e2i ρ
2
i ns,0

kBTi
∇⊥φ · ∇φ̃ dx =

∫
qn〈φ̃〉dx, ∀φ̃

I The gyrokinetic Ampère equation is obtained by variations with
respect to A‖:∫

∇⊥A‖ · ∇⊥Ãh
‖ dx +

∑
s

∫
µ0q

2
s ns

ms
〈Ah
‖〉〈Ãh

‖〉dx

= µ0

∫
j‖〈Ãh

‖〉dx, ∀Ãh
‖

I where A‖ = As
‖ + Ah

‖ and As
‖ is related to φ by the constraint

∂As
‖

∂t
+∇φ · b = 0.
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Conserved quantities

I Symmetries of Lagrangian yield invariants using Noether’s theorem

I Time translation: Conservation of energy:

E(t) =
∑
s

∫
dW0dV0fs,0(z0)Hs −

∫
dV

e2i ρ
2
i ns,0

kBTi
|∇φ|2

+
1

2µ0

∫
dV |∇⊥A‖|2.

I Axisymmetry of background vector potential:
Conservation of total canonical angular momentum:

Pϕ =
∑
s

es

∫
dW0dV0fs,0(z0)A?s,ϕ
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Discretisation of the action

I Our action principles rely on a Lagrangian (as opposed to Eulerian)
formulation of the Vlasov equation: the functionals on which our
action depends are the characteristics of the Vlasov equations X and
V in addition to the scalar and vector potentials φ and A.

I A natural discretisation relies on:
I A Monte-Carlo discretisation of the phase space at the initial time:

select randomly some initial positions of the particles.
I Approximate the continuous function spaces for φ and A by discrete

subspaces.
I Yields a discrete action where a finite (large) number of scalars are

varied: the particle phase space positions and coefficients in Finite
Element basis.

I When performing the variations, we get the classical Particle In Cell
Finite Element Method (PIC-FEM).
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FEEC needed for Maxwell’s equations

I In order to preserve the continuous structure at the discrete level,
the different unknowns φ, A, E and B need to be chosen in
compatible Finite Element spaces.

I This is provided by Finite Element Exterior Calculus (FEEC)
introduced by Arnold, Falk and Winther.

I Continuous and discrete complexes are the following

grad curl div
H1(Ω) −→ H(curl,Ω) −→ H(div,Ω) −→ L2(Ω)
↓ Π0 ↓ Π1 ↓ Π2 ↓ Π3

V0 −→ V1 −→ V2 −→ V3

I Faraday and divB = 0 verified strongly as

1E = −∇ 0φ− ∂ 1A

∂t
, 2B = ∇× 1A.

I Ampere and Gauss’ law obtained from variations of FE coefficients.
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PIC Finite Element approximation of the Action

I Compatible FE discretisation:

φh ∈ V0, Ah,Eh ∈ V1,Bh ∈ V2.

I Particle discretisation of f ≈
∑

k wkδ(x − xk(t))δ(v − vk(t))

I Vlasov-Maxwell action becomes:

SN,h =
N∑

k=1

wkLs(Z(zk,0, t0; t), Ż(zk,0, t0; t), t)−1

2

∫
|
Ng∑
i=1

ai (t)∇×Λ1
i (x)|2 dx

+
1

2

∫ ∣∣∣∣∣∣
Ng∑
i=1

φi (t)∇Λ0
i (x) +

Ng∑
i=1

dai (t)

dt
Λ1
i (x)

∣∣∣∣∣∣
2

dx.

I Z(zk,0, t0; t) will be traditionally denoted by zk(t) is the phase space
position at time t of the particle that was at zk,0 at time t0.
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PIC-FE discretisation of the action

I We know have a discrete action depending on particle positions and
Finite Element degrees of freedom, which define the generalised
coordinates

SN,h[x1, . . . , xN , ẋ1, . . . , ẋN , v1, . . . , vN , φ1, . . . , φNg , a1, . . . , aNg ]

I The discrete electric and magnetic fields are defined exactly as in
the continuous case from the discrete potentials thanks to the
compatible Finite Element spaces

Eh =
∑
i

eiΛ
1
i (x) = −∇φh −

∂Ah

∂t
, Bh =

∑
biΛ

2
i (x) = ∇× Ah.

I It immediately follows like in the continuous case the discrete
Faraday equation

∂Bh

∂t
+∇× Eh = 0.

28



Time advance via Hamiltonian splitting

I Following the prescription of Crouseilles-Einkemmer-Faou a
Hamiltonian splitting can be performed, treating the three terms of
the Hamiltonian separately

H =
1

2
vMpv +

1

2
eM1e +

1

2
bM2b = Hp + He + Hb.

I Split and solve successively (Ω(u) Poisson matrix)

du

dt
= Ω(u)∇Hi , i = p, e, b

I Lie-Trotter splitting (first order), Strang splitting (second order) or
even higher order.

I Exact solution possible for He and Hb.

I For Hp split further between the three components. Other
possibility: use variational integrator
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Comments and related work

I Variational FE-PIC codes along with control variates for noise
reduction at the base of success of PIC simulations of Tokamak
turbulence with ORB5 family of codes.

A. Bottino, NumKin 2013, 5/09/2013 

Turbulence, perpendicular vs. parallel  

(Picture: A. Bottino)
I A lot of recent effort towards variational or Hamiltonian

discretisation of Vlasov (or related)
I First ref: Lewis, Energy conserving numerical approximations of

Vlasov plasmas, JCP 1970
I Shadwick, Stamm, Estatiev, Variational formulation of macro-particle

plasma simulation algorithms (Phys Plasmas 2014)
I Squire, Qin, Tang, Geometric integration of the Vlasov-Maxwell

system with a variational particle-in-cell scheme, (Phys Plasmas 2012)

30


	Tokamak physics
	Gyrokinetic models
	From the continuous to the discrete action

