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|. OVERVIEW



e The importance of splitting integrators for

(d/dt)x = fa(z) + fo(x) + -

keeps increasing: evolutionary PDEs, geometric integration,

e Format: maps that advances one step given by composition
Y= ¢l 0Pl 0

where h is the stepsize and ¢%, ¢?, ... are exact solution flows

of (d/dt)xr = fo(x), (d/dt)x = fr(x), ...



e Standard analysis of v, starts by seeing ¢¢, qb%, ...as (non-
commuting) exponentials.

e BCH formula then used to write v; as a single exponen-
tial. The exponent provides the modified differential equation
of the integrator, ie the (h-dependent) equation whose h flow
formally coincides with y,.

e Difference between modified and true (d/dt)x = fo(x) +
fp(x) 4+ - - - equations yields information on the properties of
the integrator.



e This is an indirect approach based on comparing differential

equations rather than maps.

e |t stands apart from usual techniques in numerical ODEs

based on expansion of integrator map .

e For Runge-Kutta and related integrators the expansion of v,
Is best carried out by means of B-series (Hairer and Wanner

1974). B-series are parameterized by rooted trees.



e Murua and SS (1999) developed a B-series technique to
analyze splitting integrators (Hairer, Lubich, Wanner, Gl Book,
Chapter I11.3).

e Recently Murua and SS suggested word series as an al-
ternative to the B-series. Word series are parameterized by

words from an alphabet.

e Use of word series based on simple algebraic systematic

manipulations.



e In numerical analysis, word series may be used to study
the order of consistency of splitting integrators, find modified
equations, etc.

e Outside numerical mathematics, word series may be used
(Chartier, Murua, SS 2010-2015) to perform averaging, to find
normal forms, to compute integrals of motion, etc.

e In this talk we present an example of the use of word se-
ries to analyze splitting methods for SDEs. (Also: lto SDEs,
modified equations, ...)



Il. DEFINING WORD SERIES



A MOTIVATING (DETERMINISTIC) EXAMPLE:

de =)  Aa(t) dtfu(w).

ac A

e A finite or infinite index set (alphabet).
e fo(x) vector field in D dimensions.

e \,(t) scalar-valued function.



e Solution with (0) = xzg given by (cf Chen series)

xr(t) = xg + Z Z Jaq--an(t) faq--aT0),

n=1aq,....,an€A
with Jg,-..a,(t) given by
to

t tn
/ Aan(t’n) dtn/ )‘an_l(tn—l) dlp—1--- / )\al(tl) diy,
0

0 0
and, recursively,

fal---an(il?) — aLEf(IQ"'CLn(:C) fal(x)-

e Note separation: \a, Jay---ap /! fas fai--an-
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WORDS AND THEIR BASIS FUNCTIONS

e V¥V denotes set of all words from the alphabet A (including

the empty word 0); W,, is the set of words with n letters.
e Associate with w = aq---an € VWV its word basis function

fw(x) = fay-a(x) (With fp(x) = x). (Similar to elementary
differentials.)
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DEFINITION

o If § € CY (ie 5§ maps words into scalars), the word series

with coefficients ¢ is the formal series:

Ws(x) = Z dw fu ().

wew

e Note that the notion of word series is relative to the f,.

e For each t, the solution value x(¢) corresponds to the coef-
ficients J,,(¢) built above from the A\, (%).
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SOME PARTICULAR CASES:

EXAMPLE I: A consists of a single letter a. For each n there

IS a single word w = a - - - a with n letters.

If furthermore \o(t) = 1, Juw(t), w € Wy is found to be t™/n!.
The word series W, ;y(zo) is the Taylor expansion in powers
of ¢ of the solution x(¢) of (d/dt)x = fo(x), x(0) = xp.
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EXAMPLE II: A consists of a two letters a, b. For each n there

are 2™ words with n letters.
If furthermore A\,(t) = 1, \(t) = 1, aw(t) = t"™/n! for

w € Whp. The word series WJ(t)(xo) Is the Taylor expansion
of x(t), (d/dt)x = fo(x) + fi(x), written in terms of fg, f.
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STOCHASTIC SDEs:

o dr = fqo(x)dt + f4dB(t) (Stratonovich), fits in this frame-
work with A\q(¢) = 1 and A\ 4(t)dt = dB(t). Solution formally
given by W J(t)(xo) where now Jy,(t) is a stochastic process.
(Stochastic Taylor expansion see Kloeden and Platen, Chap-
ter 5.)
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I1l. OPERATING WITH WORD SERIES
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THE CONVOLUTION PRODUCT «

o If 5,8’ € C", their convolution product § x §' € CW is
n—1

(6 %6 )ay-an = 8000y an + D Saz-a;04, .y, F Oar-any
=1

e Not commutative.
e Associative.

e Unit: 1 € C"Wwith 1y =1and 1, = O for w # 0.
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THE GROUP G (Group of characters of shuffle Hopf algebra)

e Let LI denote shuffle product of words. (Eg abLLic = abc+
acb + cab.)

e The set G of those v € C" that satisfy the so-called shuffle
relations: vy = 1 and, for each w, w’ € W,

N N
— . [
Yw Yo = g Yw, 1f wllw = g w;.
=1 =1

IS @ noncommutative group for .
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e For fixed ¢t (and w € 2), the coefficients J,(t), w € W

satisfy the shuffle relations, ie they give an element of G.
e For v € G, the series W~ (x) has special properties:

(1) W, () acts on the vector space of all word series by com-

position:

Ws(Wr(z)) = Wo,5(z), §€C™W.
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(2) If x : RP — R is any smooth observable:

(W5 (@) = 3 7wDu() (@),

wew
where, for a € A, D, = f, - V is the Lie operator associated
with f, and for w = a1 ...an, Dy is the differential operator

Day - ... Dqg

nl

(3) Equivariance with respect to arbitrary changes of variables
x = x(X).
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IIl. SPLITTING INTEGRATORS FOR SDES
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e Consider integrators for Stratonovich equation

de = fo(x)dt 4+ --- -

B fan(x)dt

+fA1 (ZU)dBAl B

-+ fay(@)dBy,

such that the one-step map v;, is composition of flows of indi-

vidual pieces dz = fq (z)dt or de = fAj(a;)dBAj (or blocks,
eg dx = fq,(x)dt + fAQ(a?)dBAj).

e Each flow entering the composition is (for fixed t and w € $2)

a word series with known coefficients in .
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e By property (1), v, = Wv(t)(:z;), where the coefficients

~vw (t) are readily found by using the convolution formula.

e v, (t) compared with coefficients J,(t) of true solution. For
strong local error to be O(hP) , p = 3/2,2,5/2, ...

Yw(t) = Jw(t) as

for all words of weight < p — 1/2 (weight = number of lower
case letters + number of upper case letters/2). (This assumes
all relevant basis functions are % 0.)
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e By property (3)

E(x(W(1)(@)) = D E(7u(t) Du() (@),

weW

e For weak local error to be O(hP), p = 2,3, ...,

E(yw(t)) = E(Juw(t)),

for all words of weight < p — 1. (This assumes all relevant

basis functions are # 0.)
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V. LANGEVIN DYNAMICS
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e Consider

M_lp dt
F(q)dt —ypdt + o M1/2dB,

dq
dp

M diagonal with diagonal elements m; > 0, = 1,...

v > 0, B d-dimensional Wiener process.
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e Leimkuhler and Matthews (2013) consider several integra-

tors based on the split systems:
a: dg = M~ 1pdt, dp = 0.
b: dqg = 0, dp = F'(q) dt.

o.dq=0,dp = —~vypdt oM1/24B.
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e They use acronym aboba for the Strang-like splitting
bh = @, 00 ¢[i)z/2 © ¢, © 9252/2 © P, /o1

baoab defined similarly.

e Both aboba and baoab possess strong local error O (h3/2);
weak O(h3). In spite of similarity, baoab turns out to be clearly

superior to aboba.
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e We use word series based on the vector fields:
a: (M~ 1p, 0).

b: (0, F(q)).

c: (0, —yp).

A;r (0,0, /mje;), j=1,...,d
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e Sparsity pattern results in many zero word basis functions.

e For weight < 3, fu, 7= 0 only for A;, Aja, Ajc, Ajab, Ajca,
Ajcc and some purely deterministic words (that cause no trou-
ble).

e The coefficients of the methods in the word series expansion

are easily found to be:
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w | weight | aboba baoab
A; 1/2 v v
Asa | 3/2 (h/Q)JAj (h/Q)JAj
Ajc 3/2 v v

Asab | 5/2 0 (h?/4) JA;
Ajca | 5/2 (h/Q)JAjC (h/Q)JAjC
Ajcc | B/2 ve ve

e Only difference in A,ab, where baoab provides a better app-
roximation: correlation truth-approximation is v/5/3 ~ 74%

for baoab, O for aboba.
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e Symmetrically, for word A ;ba, baocab has VAba = 0, while
aboba has 74 pq = (h2/4)JAj. But then the basis function is

zero and aboba does not benefit from it.
e The same phenomena appear for longer words.
e Word analysis reveals that the source of discrepancy is the

following algorithmic flaw in aboba: in any given time step, it

uses the same value of the force in both kicks of a given step.
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