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Motivation

• Very large dynamical systems are complicated both to analyse
and to do computations on

• In many cases, for instance in mechanical systems, one can
find a low dimensional space in which most of the [interesting]
dynamics take place

• By model reduction, we mean a procedure for constructing
this lower dimensional space, and mapping the dynamics
(differential equations) onto this space

• For mechanical systems we would like the structural properties
of the high-dimensional system to be preserved after the
reduction.



Main idea

ẏ = f (y), y ∈ RN , N very large

Use the following procedure

1 Compute a sample trajectory by a numerical method to
generate {yk}, k = 1, 2, . . ..

2 Compute an (approximate) SVD

[y0, · · · ] = ŪΣV̄ T

3 for σn+1 < tol, set U = Ū(:,1:n).

4 Define y = Uz and solve

ż = UT f (Uz), for z ∈ Rn

Hopefully n� N and y(t) ≈ Uz(t).



Example
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Lagrangian mechanics

Suppose L : TM → R is a Lagrangian. Variational principle leads
to Euler-Lagrange equations

δ

∫ b

a
L(q(t), q̇(t))dt = 0 ⇒ d

dt

∂L

∂q̇
=
∂L

∂q

Natural Lagrangians are those of the form

L(q, q̇) =
1

2
〈Mq̇, q̇〉 − V (q)

for which the Euler-Lagrange equations are

Mq̈ = −DV (q), p = Mq̇



Model reduction for Lagrangian mechanics

Suppose the SVD has been performed only on the q-part, so that

q = UQ, q̇ = UQ̇

Then the reduced Lagrangian is

L̄(Q, Q̇) =
1

2
〈MUQ̇,UQ̇〉 − V (UQ)

and the corresponding Euler-Lagrange equations are

UTMUQ̈ = −UTDV (UQ)

The Legendre transform is Π = M̄Q̇ = UTMUQ̇ and

H(Q,Π) =
1

2
〈Π, M̄−1Π〉+ V (UQ)



Example revisited

The reduction on q only paves the way for structure preserving
reduced models
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Example – Structure preserving works better
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Model reduction in Lie groups

Most Lie group integrators employ either

1 Local coordinates on the group or

2 a global embedding of the group into a Euclidean model space

Both these choices have difficulties

1 The idea of model reduction is to create a subspace through
sampling of (large) portions of phase space. It is challenging
to handle the switching between charts. Exampe: If SO(3)N

is employed, then at least 4N charts are needed.

2 Global coordinates are difficult because the reduction
procedure does not respect the constraints



Re. 2, idea of Lall, Krysl and Marsden (2003)

The following procedure was proposed

1 Given a configuration manifold Q, embed it into some linear
space V

2 Apply reduction to problem in V and obtain reduced linear
space Vr ⊂ V .

3 Construct the reduced manifold Qr as Qr = Vr ∩ Q.

Problem:
dimVr = dimQr + dimV − dimQ

This scales badly for large scale problems.



Mechanical systems on Lie groups

• G Lie group with tangent bundle TG , Lie algebra g ' TeG
• L : TG → R is Lagrangian, L(q, q̇)
• Left trivialized L is ` : G × g→ R

`(g , ξ) = L(g , gξ)

Hamilton–Pontryagin variational principle

δ

∫ b

a
[`(g , ξ) + 〈µ, g−1ġ − ξ〉]dt = 0

where g ∈ G , ξ ∈ g and µ ∈ g∗ are varied freely and independently.

∂`

∂ξ
= µ, g−1ġ = ξ

L∗gg
∂`

∂g
= µ̇− ad∗ξ(µ)



Hamilton–Pontryagin in local coordinates

We introduce the local Lagrangian (near g0 ∈ G )

˜̀(v ,w) = `(g0 exp(v), dexpv (w))

where dexpv : g→ g is

dexpv (w) = Lexp(−v)∗
d

dε

∣∣∣∣
ε=0

exp(v + εw)

It is well-known that

dexpv =
1− exp(−z)

z

∣∣∣∣
z=adv

Local Hamilton–Pontryagin principle

δ

∫ b

a
[˜̀(v ,w) + 〈µ̃, v̇ − w〉] dt = 0

where v ,w , µ̃ are varied freely and independently.



The local equations

The resulting equations in local coordinates are

∂ ˜̀

∂w
= µ̃

v̇ = w

∂ ˜̀

∂v
=

d

dt
µ̃

Proposition

The equations derived from the Hamilton-Pontryagin principle for
v ,w , µ̃ are locally equivalent to the equations derived from the
Hamilton-Pontryagin principle in terms of g , ξ, µ.



Structure preserving model reduction on g

Construct as usual a reduced basis U via SVD to the full system in
local coordinates. Use the approximations

v ≈ Uλ, w ≈ Uη

to define the reduced Lagrangian

˜̀
r (λ, η) = `

(
g0 exp(Uλ), dexpUλ(Uη)

)
and employ, yet again, the HP-principle

δ

∫ b

a
[˜̀(Uλ,Uη) + 〈Uγ,Uλ̇− Uη〉] dt = 0

λ, η, γ varied freely, and independently



Water molecule model

Found e.g. in Dullweber et al. (1997).
We consider a Hamiltonian system for d soft dipolar spheres. The
configuration manifold is the Lie group G = (SO(3)× R3)×d .

H(q, p,m,Q) = T (p,m) + V (q,Q)

T (p,m) =
d∑

i=1

1

2
‖pi‖2 +

1

2
〈mi , I

−1
i mi 〉

The potential is the sum of a short range and dipole potential.

V (q,Q) = V s(q) + V d(q,Q)

V s(q) = 4ε
∑
j>i

(
σ

|rij |

)12

, rij = qi − qj



Dipole potential

V d =
∑
j>i

1

|rij |3
µi · µj −

3

|rij |5
(µi · rij)(µj · rij)

where

µi = Qi µ̄i , µ̄i fixed reference orientation of molecule i
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Numerical experiment – dipole
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Numerical experiment – dipole 30 molecules
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Work in progress

• It is not entirely satisfactory that our current method cannot
switch between charts in a geometric manner

• Recently, in shape analysis one has started to use some results
by Kriegl and Michor related to an isomorphism between
smooth curves in the Lie algebra and smooth curves on the
corresponding Lie group

• This allows for global representations of entire curves
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