Diffeomorphic Density Matching by Optimal Information Transport

Klas Modin Department of Mathematical Sciences Chalmers University of Technology, Sweden

> Joint work with: Martin Bauer, University of Vienna Sarang Joshi, University of Utah

> > MFO, March 22, 2016

Outline of talk

1 What is computational anatomy?

2 Diffeomorphic density matching

Optimal mass transport Optimal information transport

3 Examples

Outline of talk

1 What is computational anatomy?

② Diffeomorphic density matching

Optimal mass transport Optimal information transport

B Examples

What is computational anatomy?

Origin in evolutionary biology by Sir D'Arcy Thompson (1860-1948)

Modern mathematical foundation: topological hydrodynamics

What is computational anatomy?

Origin in evolutionary biology by Sir D'Arcy Thompson (1860-1948)

Modern mathematical foundation: topological hydrodynamics

Vladimir Arnold (1937-2010)

What is topological hydrodynamics?

Recall Euler's equations for a rigid body:

$$\mathcal{I}\dot{\boldsymbol{\omega}} = \boldsymbol{\omega} imes \mathcal{I} \boldsymbol{\omega}$$

where

Basic idea of topological hydrodynamics (Arnold, 1966)

Can the rigid body equations be generalized? What geometric structures are present?

Arnold's approach:

- Configuration of object described by transformation acting on it
- Set of admissible transformations form a Lie group G
- Motion takes place on the group: $\gamma(t)\in {\sf G}$

• Dynamics on *tangent bundle TG*, where G a Lie group

Connection between geometry and mechanics:

Mechanics	Geometry
Kinetic energy $L(g, \dot{g})$	Riemannian metric $\langle\!\langle \dot{g}, \dot{g} angle\! angle_g$
Euler–Lagrange equation	Geodesic equation
Symmetry $L(G \cdot (g, \dot{g})) = L(g, \dot{g})$	Left invariant metric

• Dynamics on tangent bundle TG, where G a Lie group

Connection between geometry and mechanics:

Mechanics	Geometry
Kinetic energy $L(g, \dot{g})$	Riemannian metric $\langle\!\langle \dot{g}, \dot{g} angle\! angle_g$
Euler–Lagrange equation	Geodesic equation
Symmetry $L(G \cdot (g, \dot{g})) = L(g, \dot{g})$	Left invariant metric

$$\langle\!\langle u, v
angle\!
angle_g = \left\langle \mathcal{A}g^{-1} \cdot u, g^{-1} \cdot v \right
angle$$

 $\mathcal{A} : \mathfrak{g} o \mathfrak{g}^*$ (inertia operator)

• Dynamics on tangent bundle TG, where G a Lie group

Connection between geometry and mechanics:

Mechanics	Geometry
Kinetic energy $L(g, \dot{g})$	Riemannian metric $\langle\!\langle \dot{g}, \dot{g} angle\! angle_g$
Euler–Lagrange equation	Geodesic equation
Symmetry $L(G \cdot (g, \dot{g})) = L(g, \dot{g})$	Left invariant metric

$$\langle\!\langle u, v
angle\!
angle_g = \left\langle \mathcal{A}g^{-1} \cdot u, g^{-1} \cdot v \right
angle$$

 $\mathcal{A} : \mathfrak{g} o \mathfrak{g}^*$ (inertia operator)

• Dynamics on tangent bundle TG, where G a Lie group

Connection between geometry and mechanics:

Mechanics	Geometry
Kinetic energy $L(g, \dot{g})$	Riemannian metric $\langle\!\langle \dot{g}, \dot{g} angle\! angle_g$
Euler–Lagrange equation	Geodesic equation
Symmetry $L(G \cdot (g, \dot{g})) = L(g, \dot{g})$	Left invariant metric

$$\langle\!\langle u, v
angle\!
angle_g = \left\langle \mathcal{A}g^{-1} \cdot u, g^{-1} \cdot v \right
angle$$

 $\mathcal{A} : \mathfrak{g} o \mathfrak{g}^*$ (inertia operator)

• Dynamics on *tangent bundle TG*, where G a Lie group

Connection between geometry and mechanics:

Mechanics	Geometry
Kinetic energy $L(g, \dot{g})$	Riemannian metric $\langle\!\langle \dot{g}, \dot{g} angle\! angle_g$
Euler–Lagrange equation	Geodesic equation
Symmetry $L(G \cdot (g, \dot{g})) = L(g, \dot{g})$	Left invariant metric

$$\langle\!\langle u, v \rangle\!\rangle_g = \langle \mathcal{A}g^{-1} \cdot u, g^{-1} \cdot v \rangle$$

 $\mathcal{A} : \mathfrak{g} \to \mathfrak{g}^*$ (inertia operator)

Left invariance \Rightarrow symmetry group $G \Rightarrow$ reduced phase space $TG/G \simeq \mathfrak{g}$

First two examples

	Rigid body	Ideal incompressible fluid
G, \mathfrak{g}	$SO(3),\mathfrak{so}(3)\simeq \mathbf{R}^3$	$SDiff(M), \mathfrak{X}_{\mu}(M)$
L	$\int_{\mathcal{B}} ho(\mathbf{x}) \dot{A}\mathbf{x} ^2 \mathrm{d}V$	$\int_{\mathcal{M}} \dot{arphi}(oldsymbol{x}) ^2 \mathrm{d} \mu$
E-A eq.	$\mathcal{I}\dot{oldsymbol{\omega}} = oldsymbol{\omega} imes \mathcal{I}oldsymbol{\omega}$	$\dot{u} + u^{ op} abla u = - abla p, \operatorname{div} u = 0$

Check left invariance for rigid body: $R \in SO(3), (A, A) \in T SO(3)$

$$L(RA, R\dot{A}) = \int_{\mathcal{B}} \rho(\mathbf{x}) |R\dot{A}\mathbf{x}|^{2} \mathrm{d}V = \int_{\mathcal{B}} \rho(\mathbf{x}) |\dot{A}\mathbf{x}|^{2} \mathrm{d}V = L(A, \dot{A})$$

First two examples

	Rigid body	Ideal incompressible fluid
G, \mathfrak{g}	$SO(3),\mathfrak{so}(3)\simeq \mathbf{R}^3$	$SDiff(M), \mathfrak{X}_{\mu}(M)$
L	$\int_{\mathcal{B}} ho(\mathbf{x}) \dot{A}\mathbf{x} ^2 \mathrm{d}V$	$\int_{\mathcal{M}} \dot{arphi}(oldsymbol{x}) ^2 \mathrm{d} \mu$
E-A eq.	$\mathcal{I}\dot{oldsymbol{\omega}} = oldsymbol{\omega} imes \mathcal{I}oldsymbol{\omega}$	$\dot{u} + u^{ op} abla u = - abla p, \operatorname{div} u = 0$

Check left invariance for rigid body: $R \in SO(3), (A, \dot{A}) \in T SO(3)$

$$L(RA, R\dot{A}) = \int_{\mathcal{B}} \rho(\mathbf{x}) |R\dot{A}\mathbf{x}|^2 \mathrm{d}V = \int_{\mathcal{B}} \rho(\mathbf{x}) |\dot{A}\mathbf{x}|^2 \mathrm{d}V = L(A, \dot{A})$$

Other examples of Euler-Arnold equations

Group	Metric	Equation
$SO(3) \ltimes \mathbf{R}^3$	quadratic forms	Kirchhoff's body in a fluid
SO(n)	Manakov's metrics	<i>n</i> –dimensional top
$Diff(S^1)$	L ₂	Inviscid Burgers' equation
Virasoro	L ₂	KdV equation
$Diff(S^1)$	H^1	Camassa–Holm equation
$Diff(S^1)/S^1$	\dot{H}^1	Hunter–Saxton equation
SDiff(M)	H^1	Averaged Euler fluid
$SDiff(M)\ltimes\mathfrak{X}_{\mu}(M)$	$L_{2} + L_{2}$	Magnetohydrodynamics
$C^{\infty}(S^1, SO(3))$	H^{-1}	Heisenberg magnetic chain
Diff (M)	H⁵	EPDiff equation

Other examples of Euler-Arnold equations

Group	Metric	Equation
$SO(3) \ltimes \mathbf{R}^3$	quadratic forms	Kirchhoff's body in a fluid
SO(n)	Manakov's metrics	<i>n</i> –dimensional top
$Diff(S^1)$	L ₂	Inviscid Burgers' equation
Virasoro	L ₂	KdV equation
$Diff(S^1)$	H^1	Camassa–Holm equation
$Diff(S^1)/S^1$	\dot{H}^1	Hunter–Saxton equation
SDiff(M)	H^1	Averaged Euler fluid
$SDiff(M) \ltimes \mathfrak{X}_{\mu}(M)$	$L_{2} + L_{2}$	Magnetohydrodynamics
$C^{\infty}(S^1, SO(3))$	H^{-1}	Heisenberg magnetic chain
Diff(M)	H ^s	EPDiff equation

Back to computational anatomy: abstract formulation

- *G* Lie group acting on **shape space** *S*
- d right-invariant Riemannian distance on G
- \bar{d} metric distance on S

Problem: given source $A \in S$ and target $B \in S$, find minimizer

$$\min_{g\in G} \Big(\sigma d^2(e,g) + \bar{d}^2(g \cdot A,B) \Big), \qquad \sigma > 0$$

Back to computational anatomy: abstract formulation

- *G* Lie group acting on **shape space** *S*
- d right-invariant Riemannian distance on G
- \bar{d} metric distance on S

Problem: given source $A \in S$ and target $B \in S$, find minimizer

Typical application of CA: medical image registration

Outline of talk

1 What is computational anatomy?

2 Diffeomorphic density matching Optimal mass transport

Optimal information transport

B Examples

Basic problem: find map $\varphi \colon M \to M$ such that

 $\varphi_*\mu_0 = \mu_1$

First complication: φ is not unique

Diffeomorphic density matching

Regularized problem formulation

- Manifold *M* (domain)
- Dens(M), smooth, strictly positive probability densities
- *Diff*(*M*), diffeomorphisms
- Distance $d(\cdot, \cdot)$ on Diff(M)

Exact density matching (optimal transport)

Given $\mu_0, \mu_1 \in Dens(M)$, find $\varphi \in Diff(M)$ minimizing

 $\textit{d(id, \varphi)}$

under constraint $\varphi_*\mu_0 = \mu_1$

Inexact density matching (computational anatomy)

Given $\mu_0, \mu_1 \in Dens(M)$, find $\varphi \in Diff(M)$ minimizing

$$E(arphi)=\sigma d^2(\mathit{id},arphi)+ar{d}^2(arphi_*\mu_0,\mu_1),\quad \sigma>0$$

Regularized problem formulation

- Manifold *M* (domain)
- Dens(M), smooth, strictly positive probability densities
- *Diff*(*M*), diffeomorphisms
- Distance $d(\cdot, \cdot)$ on Diff(M)

Exact density matching (optimal transport)

Given $\mu_0, \mu_1 \in Dens(M)$, find $\varphi \in Diff(M)$ minimizing

 $d(\mathit{id}, \varphi)$

under constraint $\varphi_*\mu_0 = \mu_1$ $\mu_0 = I_0\mu$ \Rightarrow $\varphi \cdot I_0 = |D\varphi^{-1}|I_0 \circ \varphi^{-1}$

Inexact density matching (computational anatomy)

Given $\mu_0, \mu_1 \in Dens(M)$, find $\varphi \in Diff(M)$ minimizing

$$\mathsf{E}(arphi)=\sigma d^2(\mathit{id},arphi)+ar{d}^2(arphi_*\mu_0,\mu_1),\quad \sigma>0$$

Optimal Mass Transport (OMT)

Exact density matching with

• $M = \Omega \subset \mathbf{R}^n$

•
$$d^2(id,\varphi) = \int_{\Omega} |x-\varphi(x)|^2 \mu_0$$

• Wasserstein distance: metric distance on Dens(M)

$$ar{d}_W(\mu_0,\mu_1) := \inf_{arphi * \mu_0 = \mu_1} d(\mathit{id},arphi)$$

Existence and uniqueness by Brenier 1991:

• Based on polar factorization of maps

 $arphi =
abla f \circ \psi$ where $\psi_* \mu_0 = \mu_0$ and f convex

Solution fulfils Monge-Ampere equation

$$|\nabla^2 f| = \frac{I_1}{I_0 \circ \nabla f}$$

Riemannian geometry of OMT (Otto calculus)

Formal geometric description by Otto 2001:

• Diff(M) infinite-dimensional Riemannian manifold with metric

$$G_{arphi}(U,V) = \int_{\mathcal{M}} g(U,V) \mu, \quad U,V \in C^{\infty}(\mathcal{M},T\mathcal{M})$$

• *G* is right-invariant w.r.t. $SDiff(M) = \{\psi \in Diff(M); \psi_*\mu = \mu\}$

$$G_{\varphi \circ \psi}(U \circ \psi, V \circ \psi) = G_{\varphi}(U, V)$$

- Consequence: G induces Riemannian metric \overline{G} on quotient Diff(M)/SDiff(M)
- Moser's lemma (1965): $Diff(M)/SDiff(M) \simeq Dens(M)$ by $\pi: \varphi \mapsto \varphi_* \mu$
- Magic: distance of \bar{G} is Wasserstein distance
- Otto's "flagship": heat equation is gradient flow of entropy w.r.t. \bar{G}

Fisher–Rao metric on Dens(M)

Canonical metric on Dens(M), important in information geometry

Fisher-Rao metric

$$\bar{G}^{\mathsf{F}}_{\mu}(\alpha,\beta) = \int_{\mathsf{M}} \frac{\alpha}{\mu} \frac{\beta}{\mu} \mu$$

Properties

1 Unique right-invariant metric on Dens(M)

$$\bar{\mathcal{G}}^{\mathsf{F}}_{\varphi^*\mu}(\varphi^*\alpha,\varphi^*\beta)=\bar{\mathcal{G}}^{\mathsf{F}}_{\mu}(\alpha,\beta),\quad\forall\,\varphi\in\mathsf{Diff}(M)$$

2 Geodesics are explicit ⇒ distance function is explicit

Idea: use Fisher–Rao distance instead of Wasserstein **Question:** Riemannian metric on Diff(M) descending to Fisher–Rao? Geometry of the Hunter-Saxton equation

$$u_{txx} + 2u_x u_{xx} + uu_{xxx} = 0, \quad u \colon [0,1] \times S^1 \to \mathbf{R}$$

 Model for rotors in liquid crystal [Hunter and Saxton, 1991]
 Geodesic eq. on S¹ \ Diff(S¹) = {(φ + R) mod 2π | φ ∈ Diff(S¹)} [Khesin and Misiolek, 2003]
 Astonishing geometry! [Lenells, 2007]

Isometric mapping to convex subset of $L^2(S^1)\text{-sphere}$ $\varphi\mapsto \sqrt{\varphi_{\scriptscriptstyle X}}$

Generalization to higher dimensions

• Fisher–Rao induces metric on *SDiff*(*M*) \ *Diff*(*M*)

New Riemannian metric on Diff(M) (information metric)

$$G_{id}^{I}(u,v) = \int_{M} \operatorname{tr}(\mathcal{L}_{u}g(\mathcal{L}_{v}g)^{\top})\mu + \sum_{i=1}^{k} \langle \xi_{k}, u \rangle \langle \xi_{k}, v \rangle$$

Lemma (M. 2014)

G¹ descends to Fisher-Rao under projection

$$\pi: Diff(M) \to Dens(M), \quad \varphi \mapsto \varphi^* \mu$$

Corollary

Horizontal geodesics on Diff(M) by lifting equations

$$egin{aligned} \Delta f(t) &= rac{\dot{\mu}(t)}{\mu(t)} \circ arphi(t)^{-1} \ v &= ext{grad} \, f(t) \ \dot{arphi}(t) &= arphi(t) \circ arphi(t) \end{aligned}$$

Optimal Information Transport (OIT)

- \bar{d}_F the Fisher–Rao distance function
- d_I the distance function of G^I

OIT problem (exact density matching)

Given $\mu_0, \mu_1 \in Dens^{s-1}(M)$, find $\varphi \in Diff^s(M)$ minimizing

 $d_I(id, \varphi)$

under constraint $\varphi_*\mu_0 = \mu_1$

Theorem (M. 2015)

Every $\phi \in Diff^{s}(M)$ has a unique decomposition $\varphi = \psi \circ \exp_{G'}(\nabla f)$ with $\psi \in SDiff^{s}(M)$ and $f \in H^{s+1}(M)$

Corollary

OIT problem has unique solution of the form $\exp_{G'}(\nabla f)$

Fast numerical method using information transport

Algorithm 1 (Bauer, Joshi, and M., 2015)

- **1** Use explicit $[0,1] \ni t \mapsto \mu(t) \in Dens(M)$ (Fisher–Rao geodesic)
- 2 At each time $t_k = k/N$
 - Lift $\dot{\mu}(t_k)$ to vector field $v(t_k) = \operatorname{grad} f(t_k)$ (solve Poisson problem)
 - Use Lie–Trotter formula to advance horizontal geodesic $\varphi(t_{k+1}) = \exp(v(t_k)) \circ \varphi(t_k)$

Algorithm 2 (Bauer, Joshi, and M., 2015)

1 Fisher–Rao gradient flow on $Dens(M) \times Dens(M)$

2 At each time t_k

- Lift $\dot{\mu}(t_k)$ to vector field $v(t_k) = \operatorname{grad} f(t_k)$ (solve Poisson problem)
- Use Lie–Trotter formula to advance horizontal geodesic
 φ(t_{k+1}) = exp(v(t_k)) ∘ φ(t_k)

Applications

1 Medical image registration

- 2 Texture mapping in computer graphics
- Image morphing techniques
- 4 Random sampling
- **5** Mesh adaptivity in numerical PDE
Outline of talk

1 What is computational anatomy?

Diffeomorphic density matching Optimal mass transport Optimal information transport

3 Examples

Example: random sampling from non-uniform distribution

- Let $M = \mathbb{T}^2$
- Non-uniform distribution, for example

$$\mu_1 = (1 - 0.8\cos(x)\cos(2y))dx \wedge dy$$

Problem formulation

Draw N random samples from distribution μ_1

Approach

- Use OIT to match μ with μ_1 , i.e., $\varphi \in Diff(M)$ s.t. $\varphi_*\mu = \mu_1$
- Draw N uniform samples (x_i, y_i) on T
- Non-uniform samples given by $(\tilde{x}_i, \tilde{y}_i) = \varphi(x_i, y_i)$

Example: random sampling from non-uniform distribution

Jacobian $|D\varphi|$ 1.6 200 - 1.4 - 1.2 400 - 1.0 600 - 0.8 800 0.6 0.4 1000 200 400 800 1000 0 600

Example: random sampling from non-uniform distribution

Jacobian $|D\varphi|$ 1.6 200 1.4 1.2 400 - 1.0 600 - 0.8 800 0.6 0.4 1000 200 800 1000 0 400 600

Non-uniform samples

.

Example: brain MRI registration

References

• Arnold.

Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits Ann. Inst. Fourier, 1966

Lenells.

The Hunter-Saxton equation describes the geodesic flow on a sphere J. Geom. Phys., 2007

- Khesin, Lenells, Misiolek, Preston. Geometry of diffeomorphism groups, complete integrability and geometric statistics GAFA, 2013
- M.

Generalized Hunter–Saxton equations, optimal information transport, and factorisation of diffeomorphisms

- J. Geom. Anal., 2015
- Bauer, Joshi, M.
 Diffeomorphic density matching by optimal information transport SIAM J. Imag. Sci., 2015

THANK YOU!