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What is computational anatomy?
Origin in evolutionary biology by Sir D’Arcy Thompson (1860–1948)

Modern mathematical foundation: topological hydrodynamics

Vladimir Arnold (1937–2010)
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What is topological hydrodynamics?

Recall Euler’s equations for a rigid body:

Iω̇ = ω × Iω

where

• ω = (ωx , ωy , ωz) is the angular velocity vector

• I =
[ axx axy axz
axy ayy ayz
axz ayz azz

]
is the inertia tensor
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Basic idea of topological hydrodynamics (Arnold, 1966)

Can the rigid body equations be generalized?
What geometric structures are present?

Arnold’s approach:

• Configuration of object described by transformation acting on it

• Set of admissible transformations form a Lie group G

• Motion takes place on the group: γ(t) ∈ G
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Basic idea of topological hydrodynamics, cont.

• Dynamics on tangent bundle TG , where G a Lie group

Connection between geometry and mechanics:

Mechanics Geometry
Kinetic energy L(g , ġ) Riemannian metric 〈〈ġ , ġ〉〉g
Euler–Lagrange equation Geodesic equation
Symmetry L(G · (g , ġ)) = L(g , ġ) Left invariant metric

• Left invariant metric ⇔ inner product on g = TeG

〈〈u, v〉〉g =
〈
Ag−1 · u, g−1 · v

〉
A : g→ g∗ (inertia operator)
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Basic idea of topological hydrodynamics, cont.

Left invariance ⇒ symmetry group G ⇒ reduced phase space TG/G ' g

Euler-Lagrange equation

d

dt

∂L

∂ġ
=
∂L

∂g
=⇒

Euler–Arnold equation

Aξ̇ = ad∗ξ(Aξ), ξ ∈ g
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First two examples

Rigid body Ideal incompressible fluid
G , g SO(3), so(3) ' R3 SDiff (M),Xµ(M)

L
∫
B ρ(x)|Ȧx |2dV

∫
M |ϕ̇(x)|2dµ

E-A eq. Iω̇ = ω × Iω u̇ + u>∇u = −∇p, div u = 0

Check left invariance for rigid body: R ∈ SO(3), (A, Ȧ) ∈ T SO(3)

L(RA,RȦ) =

∫
B
ρ(x)|RȦx |2dV =

∫
B
ρ(x)|Ȧx |2dV = L(A, Ȧ)
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Other examples of Euler–Arnold equations

Group Metric Equation

SO(3) n R3 quadratic forms Kirchhoff’s body in a fluid
SO(n) Manakov’s metrics n–dimensional top
Diff (S1) L2 Inviscid Burgers’ equation
Virasoro L2 KdV equation
Diff (S1) H1 Camassa–Holm equation

Diff (S1)/S1 Ḣ1 Hunter–Saxton equation
SDiff (M) H1 Averaged Euler fluid
SDiff (M) n Xµ(M) L2 + L2 Magnetohydrodynamics
C∞(S1, SO(3)) H−1 Heisenberg magnetic chain
Diff (M) Hs EPDiff equation
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Back to computational anatomy: abstract formulation

• G Lie group acting on shape space S
• d right-invariant Riemannian distance on G
• d̄ metric distance on S

Problem: given source A ∈ S and target B ∈ S , find minimizer

min
g∈G

(
σd2(e, g) + d̄2(g · A,B)

)
, σ > 0

A B

g

Modin (Chalmers, Sweden) What is computational anatomy? March, 2016 12



Back to computational anatomy: abstract formulation

• G Lie group acting on shape space S
• d right-invariant Riemannian distance on G
• d̄ metric distance on S

Problem: given source A ∈ S and target B ∈ S , find minimizer

min
g∈G

(
σd2(e, g) + d̄2(g · A,B)

)
, σ > 0

A B

g

Modin (Chalmers, Sweden) What is computational anatomy? March, 2016 12



Typical application of CA: medical image registration
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Density transport problem
µ0 (source) µ1 (target)

M 3 x 7−→ ϕ(x) ∈ M

Basic problem: find map ϕ : M → M such that

ϕ∗µ0 = µ1

First complication: ϕ is not unique
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Regularized problem formulation

• Manifold M (domain)

• Dens(M), smooth, strictly positive probability densities

• Diff (M), diffeomorphisms

• Distance d(·, ·) on Diff (M)

Exact density matching (optimal transport)

Given µ0, µ1 ∈ Dens(M), find ϕ ∈ Diff (M) minimizing

d(id , ϕ)

under constraint ϕ∗µ0 = µ1

Inexact density matching (computational anatomy)

Given µ0, µ1 ∈ Dens(M), find ϕ ∈ Diff (M) minimizing

E (ϕ) = σd2(id , ϕ) + d̄2(ϕ∗µ0, µ1), σ > 0
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Optimal Mass Transport (OMT)
Exact density matching with

• M = Ω ⊂ Rn

• d2(id , ϕ) =
∫

Ω|x − ϕ(x)|2µ0

• Wasserstein distance: metric distance on Dens(M)

d̄W (µ0, µ1) := inf
ϕ∗µ0=µ1

d(id , ϕ)

Existence and uniqueness by Brenier 1991:

• Based on polar factorization of maps

ϕ = ∇f ◦ ψ where ψ∗µ0 = µ0 and f convex

Solution fulfils Monge–Ampere equation

|∇2f | =
I1

I0 ◦ ∇f
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Riemannian geometry of OMT (Otto calculus)

Formal geometric description by Otto 2001:

• Diff (M) infinite-dimensional Riemannian manifold with metric

Gϕ(U,V ) =

∫
M

g(U,V )µ, U,V ∈ C∞(M,TM)

• G is right-invariant w.r.t. SDiff (M) = {ψ ∈ Diff (M);ψ∗µ = µ}

Gϕ◦ψ(U ◦ ψ,V ◦ ψ) = Gϕ(U,V )

• Consequence: G induces Riemannian metric Ḡ on quotient
Diff (M)/SDiff (M)

• Moser’s lemma (1965): Diff (M)/SDiff (M) ' Dens(M) by
π : ϕ 7→ ϕ∗µ

• Magic: distance of Ḡ is Wasserstein distance

• Otto’s “flagship”: heat equation is gradient flow of entropy w.r.t. Ḡ
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π

Diff (M)

µ0
Dens(M)

id
S

D
iff

(M
)

µ1

∇f

ϕ
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Fisher–Rao metric on Dens(M)

Canonical metric on Dens(M), important in information geometry

Fisher–Rao metric

ḠF
µ (α, β) =

∫
M

α

µ

β

µ
µ

Properties

1 Unique right-invariant metric on Dens(M)

ḠF
ϕ∗µ(ϕ∗α,ϕ∗β) = ḠF

µ (α, β), ∀ϕ ∈ Diff (M)

2 Geodesics are explicit ⇒ distance function is explicit

Idea: use Fisher–Rao distance instead of Wasserstein
Question: Riemannian metric on Diff (M) descending to Fisher–Rao?

Modin (Chalmers, Sweden) Diffeomorphic density matching March, 2016 20



Geometry of the Hunter–Saxton equation

utxx + 2uxuxx + uuxxx = 0, u : [0, 1]× S1 → R

• Model for rotors in liquid crystal [Hunter and Saxton, 1991]

• Geodesic eq. on S1\Diff (S1) = {(ϕ+ R) mod 2π | ϕ ∈ Diff (S1)}
[Khesin and Misiolek, 2003]

• Astonishing geometry! [Lenells, 2007]

Isometric mapping to convex subset of L2(S1)–sphere
ϕ 7→ √ϕx
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Generalization to higher dimensions [Khesin, Lenells, Misiolek, Preston, 2013]

• Fisher–Rao induces metric on SDiff (M)\Diff (M)

π

Diff (M)

µ0
Dens(M)

id
S

D
iff

(M
)

µ1

ψ

ϕ
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New Riemannian metric on Diff (M) (information metric)

G I
id(u, v) =

∫
M

tr(Lug(Lvg)>)µ+
k∑

i=1

〈ξk , u〉 〈ξk , v〉

Lemma (M. 2014)

G I descends to Fisher–Rao under projection

π : Diff (M)→ Dens(M), ϕ 7→ ϕ∗µ

Corollary

Horizontal geodesics on Diff (M) by lifting equations

∆f (t) =
µ̇(t)

µ(t)
◦ ϕ(t)−1

v = grad f (t)

ϕ̇(t) = v(t) ◦ ϕ(t)
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Optimal Information Transport (OIT)

• d̄F the Fisher–Rao distance function

• dI the distance function of G I

OIT problem (exact density matching)

Given µ0, µ1 ∈ Denss−1(M), find ϕ ∈ Diff s(M) minimizing

dI (id , ϕ)

under constraint ϕ∗µ0 = µ1

Theorem (M. 2015)

Every φ ∈ Diff s(M) has a unique decomposition ϕ = ψ ◦ expG I (∇f )
with ψ ∈ SDiff s(M) and f ∈ Hs+1(M)

Corollary

OIT problem has unique solution of the form expG I (∇f )
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Fast numerical method using information transport

Algorithm 1 (Bauer, Joshi, and M., 2015)

1 Use explicit [0, 1] 3 t 7→ µ(t) ∈ Dens(M) (Fisher–Rao geodesic)

2 At each time tk = k/N
• Lift µ̇(tk) to vector field v(tk) = grad f (tk) (solve Poisson problem)
• Use Lie–Trotter formula to advance horizontal geodesic
ϕ(tk+1) = exp(v(tk)) ◦ ϕ(tk)

Algorithm 2 (Bauer, Joshi, and M., 2015)

1 Fisher–Rao gradient flow on Dens(M)× Dens(M)

2 At each time tk
• Lift µ̇(tk) to vector field v(tk) = grad f (tk) (solve Poisson problem)
• Use Lie–Trotter formula to advance horizontal geodesic
ϕ(tk+1) = exp(v(tk)) ◦ ϕ(tk)
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Applications

1 Medical image registration

2 Texture mapping in computer graphics

3 Image morphing techniques

4 Random sampling

5 Mesh adaptivity in numerical PDE
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Example: random sampling from non-uniform distribution

• Let M = T2

• Non-uniform distribution, for example

µ1 = (1− 0.8 cos(x) cos(2y))dx ∧ dy

Problem formulation

Draw N random samples from distribution µ1

Approach

• Use OIT to match µ with µ1, i.e., ϕ ∈ Diff (M) s.t. ϕ∗µ = µ1

• Draw N uniform samples (xi , yi ) on T
• Non-uniform samples given by (x̃i , ỹi ) = ϕ(xi , yi )
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Example: random sampling from non-uniform distribution
Warp Jacobian |Dϕ|
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Example: hand x-ray registration
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Example: hand x-ray registration

·
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Example: hand x-ray registration
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Example: brain MRI registration
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