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Comparing planar objects
“Shape is the ultimate nonlinear thing” – David Mumford, ICM, 2002.

A B C

Q. Which pair of shapes are closest modulo rotations?

Length(A) = Length(C) = 6.4934; Length(B) = 6.4377.

A and C are identical modulo rotations.

B is about 1% different in the L2 norm.

Robert McLachlan Differential invariant signatures (after Olver) for images



Comparing planar objects
“Shape is the ultimate nonlinear thing” – David Mumford, ICM, 2002.

A B C

Q. Which pair of shapes are closest modulo rotations?

Length(A) = Length(C) = 6.4934; Length(B) = 6.4377.

A and C are identical modulo rotations.

B is about 1% different in the L2 norm.

Robert McLachlan Differential invariant signatures (after Olver) for images



Comparing planar objects
“Shape is the ultimate nonlinear thing” – David Mumford, ICM, 2002.

A B C

Q. Which pair of shapes are closest modulo rotations?

Length(A) = Length(C) = 6.4934; Length(B) = 6.4377.

A and C are identical modulo rotations.

B is about 1% different in the L2 norm.

Robert McLachlan Differential invariant signatures (after Olver) for images



Comparing planar objects

Given a set of planar objects, we may want to compare them modulo a
transformation group G .

Two main approaches:

1 Registration: For each pair a, b of objects,

min
g∈G
‖g · a− b‖

2 Invariants: Use a G -invariant representation of the objects:
a and b have the same internal representation iff b = g · a

Partial invariants: Use I where I (a) = I (g · a) for all g ∈ G .
Example: length of a curve under Euclidean group.
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The setting

1 The objects may be of various kinds:
1 Shapes: unparameterized planar curves
2 Images: f : [0, 1]2 → Rk , k = number of color channels in the image

2 Many groups may arise:
1 E(2), SE(2), Sim(2) (Euclidean groups)
2 A(2) and SA(2) (affine groups)
3 PSL(3,R) (projective group)
4 PSL(2,C) (Möbius group)

3 Applications:
1 object recognition
2 pattern matching
3 feature detection, tracking, shape analysis, tomography, . . .
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3 Applications:
1 object recognition
2 pattern matching
3 feature detection, tracking, shape analysis, tomography, . . .

Robert McLachlan Differential invariant signatures (after Olver) for images



The setting

1 The objects may be of various kinds:
1 Shapes: unparameterized planar curves
2 Images: f : [0, 1]2 → Rk , k = number of color channels in the image

2 Many groups may arise:
1 E(2), SE(2), Sim(2) (Euclidean groups)
2 A(2) and SA(2) (affine groups)
3 PSL(3,R) (projective group)
4 PSL(2,C) (Möbius group)
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Examples of Möbius shapes in nature

From S V Petukhov’s Non-Euclidean geometries and algorithms of living
bodies, 1989:
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Growth of a human skull
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The talk

1 Part I: Differential signatures of images
(Stephen Marsland, Richard Brown)

2 Part II: Currents and finite elements as a tool for shape space
(Marsland, Klas Modin, Olivier Verdier)
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Invariants in mathematics

There is a vast literature on invariants in mathematics. . .

1 There is an algorithm (the moving frame method) to construct a
minimal set of invariants for specific group actions.

2 There is classical invariant theory, which e.g seeks a First
Fundamental Theorem for each group action, i.e., the set of all
invariants of a given type (e.g. polynomial).

3 Hardly any such FFTs are known.

4 An FFT does not guarantee that the invariants distinguish the group
orbits.

5 The definition of an invariant only says I (x) = I (g · x).
It says nothing about I (x)− I (y) when x and y are in different
orbits.
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Invariants in computer science

There is vast literature on invariants in computer science.

An invariant should offer:

1 fast computation

2 good discrimination (A, B far apart iff their invariants are far apart)

3 completeness (A, B have same invariants iff they are the same)

4 stability (invariants nearby implies A, B nearby)

5 robustness (if B is a noisy A, their invariants should be nearby)

Robert McLachlan Differential invariant signatures (after Olver) for images



Peter Olver’s main example

G = SE (2) acts on curves φ : S1 → R2 by g · φ = g ◦ φ.

The set
{(κ(t), κs(t) : t ∈ [0, 1)} ⊂ R2

is a differential invariant signature for Euclidean curves.

It is also invariant under parameterizations, i.e.

ψ · φ := φ ◦ ψ, ψ ∈ Diff(S1).
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Research goal:

Systematically construct differential invariant signatures for k-colour
planar images

f : R2 → Rk

with respect to the action of a planar group G , where

g · f := f ◦ g−1.
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Example: G = E (2)

For 1-colour images f : R2 → R, the set{(
f , ‖∇f ‖2, ∇2f

)
(x , y) : (x , y) ∈ R2

}
is a differential invariant.

It is an immersed 2-dimensional submanifold of R3.

Where does this come from?
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Example: G = E (2)

1 Moving frame method:

First prolong the group action x 7→ Ax + b to get

f 7→ f , fi 7→ Aij fj , fij 7→ AijAkl fjl , . . . .

Then step-by-step solve for the group parameters to put (f , fi , . . . ) in
a reference configuration; once all parameters are determined, the
remaining coordinates of (f , fi , . . . ) are invariant.

2 Classical invariant theory: The invariant tensor theorem for O(n):
invariants are

f , fi fi , fii , fij fi fj , fij fij , fijk fijk , . . .

Robert McLachlan Differential invariant signatures (after Olver) for images



Example: G = E (2)

1 Moving frame method:

First prolong the group action x 7→ Ax + b to get

f 7→ f , fi 7→ Aij fj , fij 7→ AijAkl fjl , . . . .

Then step-by-step solve for the group parameters to put (f , fi , . . . ) in
a reference configuration; once all parameters are determined, the
remaining coordinates of (f , fi , . . . ) are invariant.

2 Classical invariant theory: The invariant tensor theorem for O(n):
invariants are

f , fi fi , fii , fij fi fj , fij fij , fijk fijk , . . .

Robert McLachlan Differential invariant signatures (after Olver) for images



How many invariants do we need?
Is this invariant complete?

1 Fails to detect singular parts, e.g. f (R) = const., R ⊂ R2, because
all sub-parts of R are locally equivalent under E (2).

2 If signature is given as a graph in R3, i.e.

∇2f = H(f , ‖∇f ‖2)

this does not determine f up to E (2), because the solution depends
on the boundary conditions.

3 The signature (f , fi fi , fii , fij fi fj) ⊂ R4 locally determines f up to E (2).
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Another example: SA(2)

Here the action is x 7→ Ax + b, detA = 1.

The prolonged action is f 7→ f , fi 7→ Aij fj , fij 7→ AikAil fkl ,. . .

This is the same as the simultaneous action of SL(2) on linear forms,
binary forms, ternary forms, etc., studied in classical invariant theory.

Up to ternary: Alexander Bessel, 1869:

There are no invariants of 1st order
There are two invariants of 2nd order, the cubic ones are

det fij , fyy f
2
x + fxx f

2
y − 2fxy fx fy .

There are 15 independent polynomial invariants of 3rd order,

fy fyy fxxx − 2fy fxy fxxy − fx fyy fxxy + fy fxx fxyy + 2fx fxy fxyy − fx fxx fyyy

fyy f
2
xxy + fxx f

2
xyy + fxy fxxx fyyy − fyy fxxx fxyy − fxy fxxy fxyy − fxx fxxy fyyy
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Images with more than 1 colour

As the number of colours increases, one expects to need fewer
derivatives

BUT there are obstructions

Example: For SA(2) on k colours f 1, . . . , f k , the Poisson brackets

{f i , f j} := f ix f
j
y − f iy f

j
x , 1 ≤ i , j ≤ k

are all invariant.
Heaps of independents invariants with only 1 derivative!

But these are also invariant under the bigger group Diffvol(R2), so
they can never be a complete invariant for SA(2) – a hidden
symmetry

Thus the number of derivatives becomes an important quantity
attached to each case.
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# derivatives needed for each group on k-colour images

k = 1 k = 2 k = 3
special Euclidean SE(2) 2 1 1
Euclidean E(2) 2 1 1
similarity Sim(2) 2 1 1
special affine SA(2) 2 2 2
affine A(2) 3 2 2
Möbius PSL(2,C) 3 3 3
projective PSL(3,R) 3 2 2
volume preserving Diffvol – 1 1
conformal Diffcon 3 1 1
all diffeos Diff – – 0
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Part II: Currents as a tool for shape space

Shape space is a space of the form

Imm(M,N)/Diff(M)

which is the image of the smooth immersions of M into N, forgetting the
parameterization.

We will consider the images of oriented smooth planar curves,

Imm(S1,R2)/Diff+(S1).
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Currents: continuous side

The current [φ] of φ is the linear function on 1-forms given by

[φ](α) :=

∫
φ(S1)

α ◦ φ.

It is an (almost complete) invariant w.r.t. reparameterizations of the
curve.

For each φ there is a 1-form β (the representer) such that

[φ](α) = (β, α)H1 ∀α ∈ H1(Λ1(R2)).

We can compare shapes using the dual (operator) norm

‖[φ]‖H−1 := ‖β‖H1

Explicitly,

(1−∇2)β =
φ′(t)

‖φ′(t)‖
δφ(S1).
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Currents: discrete side

Setup: φ : S1 → R2, [φ](α) =
∫
φ(S1)

α. Need:

1 A space V of finite elements on S1;

2 A space W of finite elements on R2;

3 A quadrature approximation of [φ]|W ; and

4 The dual norm restricted to W ∗.

This setup yields a powerful, flexible, and robust way to work with
shapes.

Specifically, we compute

Gij = (wi ,wj)H1

and solve
Gijβj = [φ](wi ).
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A shape and its representer
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How accurate is it?

The currents determine the shape very accurately: the error is O(h5)
for discontinuous quadratic elements.

The induced metric is not very accurate, because the representers
are only in H1; errors are O(h).
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Quadrature error on nonsmooth shapes
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32 random shapes compared using finite element currents

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

T
h
an
k
yo
u
fo
r
yo
u
r
at
te
n
ti
on

!

Robert McLachlan Differential invariant signatures (after Olver) for images


