Differential invariant signatures (after Olver) for images

Robert McLachlan

Institute of Fundamental Sciences, Massey University, New Zealand

Geometric Numerical Integration

Oberwolfach

22 March 2016

#### Comparing planar objects "Shape is the ultimate nonlinear thing" – David Mumford, ICM, 2002.



Q. Which pair of shapes are closest modulo rotations?

#### Comparing planar objects "Shape is the ultimate nonlinear thing" – David Mumford, ICM, 2002.



Q. Which pair of shapes are closest modulo rotations?

Length(A) = Length(C) = 6.4934; Length(B) = 6.4377.

#### Comparing planar objects "Shape is the ultimate nonlinear thing" – David Mumford, ICM, 2002.



Q. Which pair of shapes are closest modulo rotations?

Length(A) = Length(C) = 6.4934; Length(B) = 6.4377.

A and C are identical modulo rotations.

B is about 1% different in the  $L^2$  norm.

Given a set of planar objects, we may want to compare them modulo a transformation group G.

Two main approaches:

Registration: For each pair a, b of objects,

 $\min_{g\in G}\|g\cdot a-b\|$ 

• Invariants: Use a G-invariant representation of the objects: a and b have the same internal representation iff  $b = g \cdot a$  Given a set of planar objects, we may want to compare them modulo a transformation group G.

Two main approaches:

Registration: For each pair a, b of objects,

 $\min_{g\in G}\|g\cdot a-b\|$ 

- Invariants: Use a G-invariant representation of the objects: a and b have the same internal representation iff b = g · a
  - Partial invariants: Use I where I(a) = I(g ⋅ a) for all g ∈ G.
     Example: length of a curve under Euclidean group.

The objects may be of various kinds:

- Shapes: unparameterized planar curves
- **2** Images:  $f: [0,1]^2 \to \mathbb{R}^k$ , k = number of color channels in the image

# The setting

The objects may be of various kinds:

- Shapes: unparameterized planar curves
- **2** Images:  $f: [0,1]^2 \to \mathbb{R}^k$ , k = number of color channels in the image

#### Many groups may arise:

- E(2), SE(2), Sim(2) (Euclidean groups)
- **2** A(2) and SA(2) (affine groups)
- **3**  $PSL(3, \mathbb{R})$  (projective group)
- PSL(2, C) (Möbius group)

# The setting

The objects may be of various kinds:

- Shapes: unparameterized planar curves
- **2** Images:  $f: [0,1]^2 \to \mathbb{R}^k$ , k = number of color channels in the image

#### Many groups may arise:

- E(2), SE(2), Sim(2) (Euclidean groups)
- **2** A(2) and SA(2) (affine groups)
- **3**  $PSL(3, \mathbb{R})$  (projective group)
- PSL(2, C) (Möbius group)

#### Applications:

- object recognition
- apattern matching
- **9** feature detection, tracking, shape analysis, tomography, ...

From S V Petukhov's *Non-Euclidean geometries and algorithms of living bodies*, 1989:



Fig. 22. Möbius transformations in the modeling of ontogenetic transformations of the human skull. Profiles of the skulls of an adult (a), a 5-year-old (b) and a newborn (c), taken from Ref. [32].

Growth of a human skull

- Part I: Differential signatures of images (Stephen Marsland, Richard Brown)
- Part II: Currents and finite elements as a tool for shape space (Marsland, Klas Modin, Olivier Verdier)

- There is an algorithm (the moving frame method) to construct a minimal set of invariants for specific group actions.
- There is classical invariant theory, which e.g seeks a *First Fundamental Theorem* for each group action, i.e., the set of all invariants of a given type (e.g. polynomial).

- There is an algorithm (the moving frame method) to construct a minimal set of invariants for specific group actions.
- There is classical invariant theory, which e.g seeks a *First Fundamental Theorem* for each group action, i.e., the set of all invariants of a given type (e.g. polynomial).
- Hardly any such FFTs are known.

- There is an algorithm (the moving frame method) to construct a minimal set of invariants for specific group actions.
- There is classical invariant theory, which e.g seeks a *First Fundamental Theorem* for each group action, i.e., the set of all invariants of a given type (e.g. polynomial).
- Hardly any such FFTs are known.
- An FFT does not guarantee that the invariants distinguish the group orbits.

- There is an algorithm (the moving frame method) to construct a minimal set of invariants for specific group actions.
- There is classical invariant theory, which e.g seeks a *First Fundamental Theorem* for each group action, i.e., the set of all invariants of a given type (e.g. polynomial).
- Hardly any such FFTs are known.
- An FFT does not guarantee that the invariants distinguish the group orbits.
- The definition of an invariant only says I(x) = I(g ⋅ x). It says nothing about I(x) - I(y) when x and y are in different orbits.

There is vast literature on invariants in computer science.

An invariant should offer:

- fast computation
- good discrimination (A, B far apart iff their invariants are far apart)
- ompleteness (A, B have same invariants iff they are the same)
- stability (invariants nearby implies A, B nearby)
- Solution robustness (if B is a noisy A, their invariants should be nearby)

G = SE(2) acts on curves  $\phi \colon S^1 \to \mathbb{R}^2$  by  $g \cdot \phi = g \circ \phi$ .

The set

$$\{(\kappa(t),\kappa_s(t)\colon t\in[0,1)\}\subset\mathbb{R}^2$$

is a differential invariant signature for Euclidean curves.

It is also invariant under parameterizations, i.e.

 $\psi \cdot \phi := \phi \circ \psi, \quad \psi \in \operatorname{Diff}(S^1).$ 

#### Research goal:

Systematically construct differential invariant signatures for  $k\mbox{-}{\rm colour}$  planar images

$$f: \mathbb{R}^2 \to \mathbb{R}^k$$

with respect to the action of a planar group G, where

$$g \cdot f := f \circ g^{-1}.$$

For 1-colour images  $f : \mathbb{R}^2 \to \mathbb{R}$ , the set

 $\left\{\left(f, \|\nabla f\|^2, \nabla^2 f\right)(x, y) \colon (x, y) \in \mathbb{R}^2\right\}$ 

is a differential invariant.

It is an immersed 2-dimensional submanifold of  $\mathbb{R}^3$ .

Where does this come from?







# Example: G = E(2)

#### Moving frame method:

 $\bullet\,$  First prolong the group action  $x\mapsto {\mathcal A} x+b$  to get

 $f \mapsto f, \quad f_i \mapsto A_{ij}f_j, \quad f_{ij} \mapsto A_{ij}A_{kl}f_{jl}, \ldots$ 

• Then step-by-step solve for the group parameters to put  $(f, f_i, ...)$  in a reference configuration; once all parameters are determined, the remaining coordinates of  $(f, f_i, ...)$  are invariant.

#### Moving frame method:

 $\bullet\,$  First prolong the group action  $x\mapsto {\mathcal A} x+b$  to get

 $f \mapsto f, \quad f_i \mapsto A_{ij}f_j, \quad f_{ij} \mapsto A_{ij}A_{kl}f_{jl}, \ldots$ 

- Then step-by-step solve for the group parameters to put  $(f, f_i, ...)$  in a reference configuration; once all parameters are determined, the remaining coordinates of  $(f, f_i, ...)$  are invariant.
- Classical invariant theory: The invariant tensor theorem for O(n): invariants are

$$f$$
,  $f_i f_i$ ,  $f_{ii}$ ,  $f_{ij} f_i f_j$ ,  $f_{ij} f_{ij}$ ,  $f_{ijk} f_{ijk}$ ,...

# How many invariants do we need? Is this invariant complete?

● Fails to detect singular parts, e.g. f(R) = const., R ⊂ ℝ<sup>2</sup>, because all sub-parts of R are locally equivalent under E(2).

- Fails to detect singular parts, e.g. f(R) = const., R ⊂ ℝ<sup>2</sup>, because all sub-parts of R are locally equivalent under E(2).
- 2 If signature is given as a graph in  $\mathbb{R}^3$ , i.e.

 $\nabla^2 f = H(f, \|\nabla f\|^2)$ 

this does not determine f up to E(2), because the solution depends on the boundary conditions.

- Fails to detect singular parts, e.g. f(R) = const., R ⊂ ℝ<sup>2</sup>, because all sub-parts of R are locally equivalent under E(2).
- 2 If signature is given as a graph in  $\mathbb{R}^3$ , i.e.

 $\nabla^2 f = H(f, \|\nabla f\|^2)$ 

this does not determine f up to E(2), because the solution depends on the boundary conditions.

**③** The signature  $(f, f_i f_i, f_{ii}, f_{ij} f_i f_j) \subset \mathbb{R}^4$  locally determines f up to E(2).

# Another example: 5A(2)

- Here the action is  $\mathbf{x} \mapsto A\mathbf{x} + \mathbf{b}$ , det A = 1.
- The prolonged action is  $f \mapsto f$ ,  $f_i \mapsto A_{ij}f_j$ ,  $f_{ij} \mapsto A_{ik}A_{il}f_{kl}$ ,...
- This is the same as the simultaneous action of *SL*(2) on linear forms, binary forms, ternary forms, etc., studied in classical invariant theory.

# Another example: 5A(2)

- Here the action is  $\mathbf{x} \mapsto A\mathbf{x} + \mathbf{b}$ , det A = 1.
- The prolonged action is  $f \mapsto f$ ,  $f_i \mapsto A_{ij}f_j$ ,  $f_{ij} \mapsto A_{ik}A_{il}f_{kl}$ ,...
- This is the same as the simultaneous action of *SL*(2) on linear forms, binary forms, ternary forms, etc., studied in classical invariant theory.
- Up to ternary: Alexander Bessel, 1869:
  - There are no invariants of 1st order
  - There are two invariants of 2nd order, the cubic ones are

$$\det f_{ij}, \quad f_{yy}f_x^2 + f_{xx}f_y^2 - 2f_{xy}f_xf_y.$$

• There are 15 independent polynomial invariants of 3rd order,

$$f_y f_{yy} f_{xxx} - 2 f_y f_{xy} f_{xxy} - f_x f_{yy} f_{xxy} + f_y f_{xx} f_{xyy} + 2 f_x f_{xy} f_{xyy} - f_x f_{xx} f_{yyy}$$

$$f_{yy}f_{xxy}^2 + f_{xx}f_{xyy}^2 + f_{xy}f_{xxx}f_{yyy} - f_{yy}f_{xxx}f_{xyy} - f_{xy}f_{xxy}f_{xyy} - f_{xx}f_{xxy}f_{yyy}$$





 $f_{xx}f^2 + f_{yy}f^2 - 2f_xf_yf_{xy}$ 

- As the number of colours increases, one expects to need fewer derivatives
- BUT there are obstructions

- As the number of colours increases, one expects to need fewer derivatives
- BUT there are obstructions
- Example: For SA(2) on k colours  $f^1, \ldots, f^k$ , the Poisson brackets

$$\{f^i,f^j\}:=f^i_xf^j_y-f^i_yf^j_x,\quad 1\leq i,j\leq k$$

are all invariant.

Heaps of independents invariants with only 1 derivative!

- As the number of colours increases, one expects to need fewer derivatives
- BUT there are obstructions
- Example: For SA(2) on k colours  $f^1, \ldots, f^k$ , the Poisson brackets

$$\{f^i,f^j\}:=f^i_xf^j_y-f^i_yf^j_x,\quad 1\leq i,j\leq k$$

are all invariant.

Heaps of independents invariants with only 1 derivative!

But these are also invariant under the bigger group Diff<sub>vol</sub>(ℝ<sup>2</sup>), so they can never be a complete invariant for SA(2) – a hidden symmetry

- As the number of colours increases, one expects to need fewer derivatives
- BUT there are obstructions
- Example: For SA(2) on k colours  $f^1, \ldots, f^k$ , the Poisson brackets

$$\{f^i,f^j\}:=f^i_xf^j_y-f^i_yf^j_x,\quad 1\leq i,j\leq k$$

are all invariant.

Heaps of independents invariants with only 1 derivative!

- But these are also invariant under the bigger group Diff<sub>vol</sub>(ℝ<sup>2</sup>), so they can never be a complete invariant for SA(2) a hidden symmetry
- Thus the number of derivatives becomes an important quantity attached to each case.

|                   |                                | k = 1 | <i>k</i> = 2 | <i>k</i> = 3 |
|-------------------|--------------------------------|-------|--------------|--------------|
| special Euclidean | SE(2)                          | 2     | 1            | 1            |
| Euclidean         | E(2)                           | 2     | 1            | 1            |
| similarity        | Sim(2)                         | 2     | 1            | 1            |
| special affine    | SA(2)                          | 2     | 2            | 2            |
| affine            | A(2)                           | 3     | 2            | 2            |
| Möbius            | $PSL(2,\mathbb{C})$            | 3     | 3            | 3            |
| projective        | $PSL(3,\mathbb{R})$            | 3     | 2            | 2            |
| volume preserving | Diff <sub>vol</sub>            | _     | 1            | 1            |
| conformal         | $\mathrm{Diff}_{\mathrm{con}}$ | 3     | 1            | 1            |
| all diffeos       | Diff                           | -     | -            | 0            |

Shape space is a space of the form

 $\operatorname{Imm}(M, N) / \operatorname{Diff}(M)$ 

which is the image of the smooth immersions of M into N, forgetting the parameterization.

We will consider the images of oriented smooth planar curves,

 $\operatorname{Imm}(S^1, \mathbb{R}^2) / \operatorname{Diff}^+(S^1).$ 

• The current  $[\phi]$  of  $\phi$  is the linear function on 1-forms given by

$$[\phi](\alpha) := \int_{\phi(S^1)} \alpha \circ \phi.$$

• The current  $[\phi]$  of  $\phi$  is the linear function on 1-forms given by

$$[\phi](\alpha) := \int_{\phi(S^1)} \alpha \circ \phi.$$

• It is an (almost complete) invariant w.r.t. reparameterizations of the curve.

• The current  $[\phi]$  of  $\phi$  is the linear function on 1-forms given by

$$[\phi](\alpha) := \int_{\phi(S^1)} \alpha \circ \phi.$$

- It is an (almost complete) invariant w.r.t. reparameterizations of the curve.
- For each  $\phi$  there is a 1-form  $\beta$  (the *representer*) such that

$$[\phi](\alpha) = (\beta, \alpha)_{H^1} \quad \forall \alpha \in H^1(\Lambda^1(\mathbb{R}^2)).$$

• The current  $[\phi]$  of  $\phi$  is the linear function on 1-forms given by

$$[\phi](\alpha) := \int_{\phi(S^1)} \alpha \circ \phi.$$

- It is an (almost complete) invariant w.r.t. reparameterizations of the curve.
- For each  $\phi$  there is a 1-form  $\beta$  (the *representer*) such that

$$[\phi](\alpha) = (\beta, \alpha)_{H^1} \quad \forall \alpha \in H^1(\Lambda^1(\mathbb{R}^2)).$$

• We can compare shapes using the dual (operator) norm

 $\|[\phi]\|_{H^{-1}} := \|\beta\|_{H^1}$ 

• The current  $[\phi]$  of  $\phi$  is the linear function on 1-forms given by

$$[\phi](\alpha) := \int_{\phi(S^1)} \alpha \circ \phi.$$

- It is an (almost complete) invariant w.r.t. reparameterizations of the curve.
- For each  $\phi$  there is a 1-form  $\beta$  (the *representer*) such that

$$[\phi](\alpha) = (\beta, \alpha)_{H^1} \quad \forall \alpha \in H^1(\Lambda^1(\mathbb{R}^2)).$$

• We can compare shapes using the dual (operator) norm

 $\|[\phi]\|_{H^{-1}} := \|\beta\|_{H^1}$ 

• Explicitly,

$$(1-
abla^2)eta=rac{\phi'(t)}{\|\phi'(t)\|}\delta_{\phi(\mathcal{S}^1)}.$$

#### Currents: discrete side

Setup:  $\phi: S^1 \to \mathbb{R}^2$ ,  $[\phi](\alpha) = \int_{\phi(S^1)} \alpha$ . Need:

- A space V of finite elements on  $S^1$ ;
- **2** A space W of finite elements on  $\mathbb{R}^2$ ;
- A quadrature approximation of  $[\phi]|_W$ ; and
- The dual norm restricted to  $W^*$ .

This setup yields a powerful, flexible, and robust way to work with shapes.

#### Currents: discrete side

Setup:  $\phi: S^1 \to \mathbb{R}^2$ ,  $[\phi](\alpha) = \int_{\phi(S^1)} \alpha$ . Need:

- A space V of finite elements on  $S^1$ ;
- **2** A space W of finite elements on  $\mathbb{R}^2$ ;
- A quadrature approximation of  $[\phi]|_W$ ; and
- The dual norm restricted to W\*.

This setup yields a powerful, flexible, and robust way to work with shapes.

Specifically, we compute

$$G_{ij} = (w_i, w_j)_{H^1}$$

and solve

$$G_{ij}\beta_j=[\phi](w_i).$$

#### A shape and its representer



- The currents determine the shape very accurately: the error is O(h<sup>5</sup>) for discontinuous quadratic elements.
- The induced metric is not very accurate, because the representers are only in H<sup>1</sup>; errors are O(h).

### Quadrature error on nonsmooth shapes



### 32 random shapes compared using finite element currents



Thank you for your attention