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Introduction

Abstract

We consider low-rank approximation of time-dependent problems.

When singular values in the solution tend to zero, standard
time-stepping schemes for low-rank approximation of differential
equations break down.

We prove that, under mild assumptions, a new time-stepping
scheme is robust in this situation.



Introduction

What we are after

We want to solve parabolic and Schrodinger-type PDEs in high
dimensions,
(—)us = Au+ f(x,u), xeRC.
This has been done with low-rank methods,
e MCTDH! (Tucker format) standard approach for TDSE.

o Multi-level MCTDH? (~ Hierarchical Tucker) for higher
dimensions.

e Tensor trains have also been used.

It seems to work, also for “real” problems, but theory is incomplete.

!Meyer et al. (1990)
2Wang and Thoss (2003)



Introduction

What we are after

For most of this talk, we will stick to the ODE

A(t) = F(t,A(t)),  A(0) = A, A(t) e C™ ",



Introduction

The low-rank manifold

The set
M, ={X € C"™" : rank(X) = r}

is a smooth manifold, embedded in C™",
However, its curvature depends in a nasty way on o,:

X, Y €M, 0/(X)=p>0, [ X=Y]| < 3p,
B c Crxn,
P(X) orthogonal projection onto TxM,. Then,3

I(P(Y) = P(X))BIl < 807 Y — X[[[| B|2.

3Koch and Lubich (2007).
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Introduction

Conflict of interests

o If o, small, approximation manifold strongly curved.
e If .1 large, approximation error large.

e Reasonably, o, = 0,41.



Introduction

Dynamical low-rank approximation
Consider the matrix ODE

A(t) = F(t,A(t)),  A:[0,T]— C™".

We seek a low-rank approximation Y(t) € M, to A(t).
Y represented as skinny SVD,

Y = USV™, u,vec™, SecC™.
Gauge conditions U*U = V*V = 0 yields
U= (- UUF(t,Y)VSL,
S=U*F(t,Y)V,

V = (I — W*)F(t, Y)*US™™*.

— Breaks down when ¢,(Y) — 0. Not a feasible way.



Introduction

[[lustration of the stiffness

A=WIA+A+AW,,  A(0) = diag {277}, W;+w," =o.

4™ order Runge-Kutta method Lie-Trotter projector splitting integrator
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Introduction

Low-rank evolution equation
We have

A(t) = F(t,A(t)),  A(0)=Ay,  A(t) e C™n
which we approximate by
Y(t) e M, ={Y € C™" : rank(Y) =r}.

Apply the Dirac—Frenkel time-dependent variational principle,
i.e., a Galerkin condition on the tangent space.

Let P(Y) orthogonal projection onto Ty.M,, and

Y(t) = P(Y(t))F(t. (),  Y(0)= Yo
Equivalently, find Y(t) € Ty M, such that

(Z,Y(t)) =(Z,F(t,Y (1)) VYZ€E TypM..

10/32



Introduction

Low-rank evolution equation

Y(t) = P(Y()F(t,Y(),  Y(0)=Yo.

Compact storage of the form Y = USV*.

Lipschitz constant of P(Y) is proportional to the curvature of M,,

and thus to oL,

Standard time-stepping schemes break down as o, — 0.

11/32



The splitting scheme

The splitting scheme
P(Y) has the representation*
P(Y)=P{(Y)— P (Y)+PS(Y),  with

PH(Y)Z = ZW*, P{(Y)Z = UU*ZW*, P} (Y)Z = UU*Z.

Let F=(t, Y) = +PF(Y)F(t, Y).
Then, the splitting scheme® reads

Y]_ = d)F;(ha 07 (DFl_ (h? 07 ¢F1+(h7 0’ YO)))

*Koch and Lubich (2007).
®Lubich and Oseledets (2014).



The splitting scheme

The splitting scheme

More practically stated,
« K(t) = F(t,K()V5)Vo,  K(0) = UoS,

[Ur, S1] = qu(K(h)),

o S(t) = —UiF(t, U1S(t)VE) Vo, 5(0) =Sy,

o S0 =S(h),
o L(t) = F(t,UL(t)*)* U,  L(0)= Vo&;

[V1, 511 = ar(L(h)).

— Singular vectors preserved during some substeps.



The splitting scheme

For an accurate low-rank solution

e Must exist X(t) € M, such that ||A(t) — X(t)| is small
(approximability).

e Approximation Y'(t) must be close to X(t) (or A(t)).

e Time-stepping must be accurate, Yy =~ Y(kh) with h the time
step.

We assume approximability and prove the rest, i.e.,
we show that |A(kh) — Y| is small.

14 /32



The splitting scheme

What we assume

F(t,Y) maps almost onto the tangent space,
F(t,Y)= M(t,Y)+ R(t,Y),
where
M(t,Y)e TyM, and |R(t,Y)|| <e forall Y € M,.
For the initial data, we assume || Yy — Ao|| < 4.
We also assume that F(t, -) is Lipschitz continuous and bounded,

|F(t,Y)=F(t, V)| < L|Y =Y| forall Y,V ecCm™,
|F(t,Y)| <B forall Y e C™".

15/32



The splitting scheme

The exactness result

Theorem (Lubich and Oseledets (2014))

If
At) = F(t),  A(0) = Ao,

with A(t) € M, for all t € [0, T], and if Y(0) = Ao, then the
splitting scheme is exact.

A similar exactness result holds also for tensor trains.

16 /32



The splitting scheme

Proof (Lubich and Oseledets (2014))
We have

A1 = Ap + AA, Ag, A1 € M,,
Yo = Ao = UoSo Vg,
ULUiAL = A, AdVoVi = Ao
Then, one step of the splitting scheme gives
Yi= SV
= UpSp de + AAV, de - U UikAAVO V(;k + Us UikAA
= Ay + (Al — Ao)\/o\/(;k — U1Uik(A1 — A())\/Q\/ék + U1UT(A1 — Ao)
=Ag +A]_VOV6k — Ay — AlVOV(;< + UlUon + A — U1Uon
= A;.

17 /32



Error estimates

The error estimate

Theorem
Under the stated assumptions, the error of the splitting scheme at
txy = kh is bounded by

| Yk — A(tk)l| < cod + c1e + cah, t < T,

where ¢; depend only on L, B, and T.

Standard error analysis for splitting methods, in contrast, would
give an error estimate of the form

h
HYk — Y(tk)H < b + C3g.

18 /32



Error estimates

Proof idea

For the local error estimate,

@ Construct X(t), with X(t) = M(t, X(t)), close to A(t).

@® Show that R(t, Y) introduces small perturbation in each
substep.

© Use preservation of singular vectors to isolate the
perturbations, get splitting scheme for X plus perturbation.

O© Apply exactness result for X.

19/32



Error estimates

The difficult part

Let
X(t) = ¢M(t,0,Xo) e M,,

with || Xo — Yo|| < h(4BLh + 2¢), be the solution to the problem
with R = 0.

Lemma

Under the same assumptions as previously, we have

Y1 — X(h)|| < h(9BLA + 4¢).



Error estimates

Given that. ..

We assumed ||X(0) — Yo|| = hO(c + h).

The lemma gives || Y1 — X(h)|| = hO(e + h).

By Gronwall’s lemma,
|®£(h,0, Yo) — X(h)[| < e M|X(0) — Yol| + heeth.

= local error ||®£(h,0, Yp) — Yi|| = hO(h +¢).

By || Yo — Ao|| < ¢ and a Lady Windermere's fan argument,
global error = O(6 + h + ¢).



Extension to tensor trains

In higher dimensions

Low-rank representations of the tensor

A g Cmxxnd.
Tucker Hierarchical Tucker Tensor train
rd 4+ drn drn+ dr3 dr?n dofs.
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Extension to tensor trains

Extension to tensor trains

Projection to tangent space of TT-manifold reads

d—1
P(Y) =) (PF(Y)=Pr(Y)+PJ(Y),  with
i=1
Pl+ = P§i71P2i+17 P,_ = PSiPZiJrl-

Corresponding splitting scheme has 2d — 1 substeps.

Elements of a tensor can be arranged in a matrix (matrix
unfolding).

TT splitting scheme can be written as sequence of matrix splitting
schemes.



Extension to tensor trains

Extension to tensor trains

Write the d-dimensional tensor Y as the matrix Y<1>, with first
mode as rows and other (d — 1) modes as columns.

Action of d-dimensional TT splitting scheme:

o Apply first two steps of matrix splitting scheme.

e Solve third step approximately using (d — 1)-dimensional TT
splitting scheme.

e = Error estimate follows by induction.

This can be done without forming the matrices explicitly.



Conclusion

Numerical example

Quantum harmonic oscillator in 2d,
1
iue(x, t) = —EAU(X, t) + V(x)u(x,t), x €R? t>0,

1 1
u(x,0) = 7Y% exp <§X12 + E(Xz — 1)2),

1 _
with  V(x) = §XT <_21 31> X.

Discretise with Fourier collocation, solve subproblems with Krylov
subspace method.

Lipschitz constant is nasty, ~ Ax~2.



Conclusion

Numerical example

10
. ) ) 107
Since the error estimate involve
the Lipschitz constant, we should 5 10"
need tiny time steps for PDEs g,
5 10
(h < Ax?).
10°
H H -10
Experlr_nental experience suggests 10 e T s
otherwise. rank

n = 64 (dashed), n = 128 (solid).
h=0.02 (x), h=0.01 (plain).
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Conclusion

Summary and outlook

e Low-rank manifolds are strongly curved where singular values
are small. This makes time-integration difficult.

e For the projector-splitting integrator we proved an O(h + ¢)
error estimate, independent of the included singular values.

e Such an estimate is not possible for standard methods, as
Lip(P(-)) ~ o, .

e Estimate depends on L = Lip(F), and thus not applicable for
PDEs.
— Still we get good results also for PDEs.
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Conclusion

Proof of the lemma (1/5)

We can write

with
A(t,Y)=F(t,Y)— F(t, X(t))+
— PH(Y)R(t, Y) + R(t, X(t)),
and
|A(t, Y(O)| < L||Y(t) — X(t)|| +2¢ < cBLh + 2e.
—

— Use exactness result for X and bound effect of small
perturbation A.



Conclusion

Proof of the lemma (2/5)

VE(t) = £PE(YE() (X(0) + At V()
= GH(L YT (1) +AT(E V(D).

By the exactness result,
X(h) =@+ (h,0,®5-(h,0,5:(h,0,Xp))).

Grobner—Alekseev lemma vyields

Y=(h) = & «(h,0, ﬁi(O))+/h8¢G¢(h, t, YE(£))AF(t, YE(t)) dt,
; o ;

1

hEE

i

= Y1=05:(h,0,0,-(h,0,c+(h,0, Yo) + hE{") + hEy) + hE;".



Conclusion

Proof of the lemma (3/5)

Let Y = Y*(t), Z = +A(t, Y;5(t)), and bound the integrand
KE(1) = 0% o= (h, 7, Y)PE(Y)Z

1 .
_ (;.Lnog@cii(h,n Y +0PE(Y)Z) — O (h,T, Y)).

Using K*(h) = PF(Y)Z and Kii(r) = 0 (next slide), we get
IKE (O = [PE(Y)ZI = IPE(YE(®)AE YE)I < 1AL (),

and thereby,
|EF|| < cBLh + 2e.

30/32



Conclusion

Proof of the lemma (4/5)

Important properties of the projections:
PE(@p=(t,s,Y)) = PE(Y) forall Y € M,,
PE(Y + PE(Y)Z) = PE(Y) forall Y € M,,Z € C™".

Using this, the derivative of K,.i follows as

. 1
KE(r) = — lim 1(G2(r. 0 (hor, ¥ + 0PE(Y)2))

~ G (r, 0+ (h,7.Y)))

— :Feli—r>n0 % (P;—L(¢Gii(h, 7, Y +0PE(Y)Z)X(T)
— PE(@ge(h,T, Y))X(T))

1

=% lim o (PE(V)X() - PE(YV)X(7)) = 0.
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Conclusion

Proof of the lemma (5/5)

EijE were created under the action of projections, and Pl+ and Pj
are “subprojections” of P; . Hence,

C (06 (1,0, 4 hET) — 06, (£0,9)) =0 B = Py (V).
%(cbq(t, 0, Yo+ hES) — 06 (.0, ¥0)) =0 Ef = P(Yo)Ef,
and Y1 = & (h,0,04-(h,0,0¢+(h,0, Yo+ hE[)))+ hE[ +hES .
By the exactness result, with Xo = Y + hE',

Y1 =g (h,0,05-(h,0,®6:(h,0,X0))) + hEy + hEy"
= X(h) + h(E; + E)), |E; + ES|| < (9BLh + 4e).
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