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Abstract

We consider low-rank approximation of time-dependent problems.

When singular values in the solution tend to zero, standard
time-stepping schemes for low-rank approximation of differential
equations break down.

We prove that, under mild assumptions, a new time-stepping
scheme is robust in this situation.
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What we are after

We want to solve parabolic and Schrödinger-type PDEs in high
dimensions,

(−i)ut = ∆u + f (x , u), x ∈ Rd .

This has been done with low-rank methods,

• MCTDH1 (Tucker format) standard approach for TDSE.

• Multi-level MCTDH2 (∼ Hierarchical Tucker) for higher
dimensions.

• Tensor trains have also been used.

It seems to work, also for “real” problems, but theory is incomplete.

1Meyer et al. (1990)
2Wang and Thoss (2003)
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What we are after

For most of this talk, we will stick to the ODE

Ȧ(t) = F (t,A(t)), A(0) = A0, A(t) ∈ Cn×n.
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The low-rank manifold

The set
Mr = {X ∈ Cn×n : rank(X ) = r}

is a smooth manifold, embedded in Cn×n.
However, its curvature depends in a nasty way on σr :

X ,Y ∈Mr , σr (X ) ≥ ρ > 0, ‖X − Y ‖ ≤ 1
8ρ,

B ∈ Cn×n,
P(X ) orthogonal projection onto TXMr . Then,3

‖(P(Y )− P(X ))B‖ ≤ 8ρ−1‖Y − X‖‖B‖2.

3Koch and Lubich (2007).
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Conflict of interests

• If σr small, approximation manifold strongly curved.

• If σr+1 large, approximation error large.

• Reasonably, σr ≈ σr+1.
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Dynamical low-rank approximation
Consider the matrix ODE

Ȧ(t) = F (t,A(t)), A : [0,T ]→ Cn×n.

We seek a low-rank approximation Y (t) ∈Mr to A(t).
Y represented as skinny SVD,

Y = USV ∗, U,V ∈ Cn×r , S ∈ Cr×r .

Gauge conditions U∗U̇ = V ∗V̇ = 0 yields

U̇ = (I − UU∗)F (t,Y )VS−1,

Ṡ = U∗F (t,Y )V ,

V̇ = (I − VV ∗)F (t,Y )∗US−∗.

– Breaks down when σr (Y )→ 0. Not a feasible way.
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Illustration of the stiffness

Ȧ = W1A+A+AW T
2 , A(0) = diag {2−j}, Wi +W T

i = 0.
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Low-rank evolution equation
We have

Ȧ(t) = F (t,A(t)), A(0) = A0, A(t) ∈ Cn×n,

which we approximate by

Y (t) ∈Mr = {Y ∈ Cn×n : rank(Y ) = r}.

Apply the Dirac–Frenkel time-dependent variational principle,
i.e., a Galerkin condition on the tangent space.

Let P(Y ) orthogonal projection onto TYMr , and

Ẏ (t) = P(Y (t))F (t,Y (t)), Y (0) = Y0.

Equivalently, find Ẏ (t) ∈ TYMr such that

〈Z , Ẏ (t)〉 = 〈Z ,F (t,Y (t))〉 ∀Z ∈ TY (t)Mr .
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Low-rank evolution equation

Ẏ (t) = P(Y (t))F (t,Y (t)), Y (0) = Y0.

Compact storage of the form Y = USV ∗.

Lipschitz constant of P(Y ) is proportional to the curvature of Mr ,
and thus to σ−1

r .

Standard time-stepping schemes break down as σr → 0.
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The splitting scheme

P(Y ) has the representation4

P(Y ) = P+
1 (Y )− P−1 (Y ) + P+

2 (Y ), with

P+
1 (Y )Z = ZVV ∗, P−1 (Y )Z = UU∗ZVV ∗, P+

2 (Y )Z = UU∗Z .

Let F±i (t,Y ) = ±P±i (Y )F (t,Y ).

Then, the splitting scheme5 reads

Y1 = ΦF+
2

(h, 0,ΦF−
1

(h, 0,ΦF+
1

(h, 0,Y0))).

4Koch and Lubich (2007).
5Lubich and Oseledets (2014).
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The splitting scheme

More practically stated,

• K̇ (t) = F (t,K (t)V ∗0 )V0, K (0) = U0S0,

• [U1, Ŝ1] = qr(K (h)),

• Ṡ(t) = −U∗1F (t,U1S(t)V ∗0 )V0, S(0) = Ŝ1,

• S̃0 = S(h),

• L̇(t) = F (t,UL(t)∗)∗U1, L(0) = V0S̃
∗
0 ,

• [V1,S
∗
1 ] = qr(L(h)).

– Singular vectors preserved during some substeps.
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For an accurate low-rank solution

• Must exist X (t) ∈Mr such that ‖A(t)− X (t)‖ is small
(approximability).

• Approximation Y (t) must be close to X (t) (or A(t)).

• Time-stepping must be accurate, Yk ≈ Y (kh) with h the time
step.

We assume approximability and prove the rest, i.e.,
we show that ‖A(kh)− Yk‖ is small.
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What we assume
F (t,Y ) maps almost onto the tangent space,

F (t,Y ) = M(t,Y ) + R(t,Y ),

where

M(t,Y ) ∈ TYMr and ‖R(t,Y )‖ ≤ ε for all Y ∈Mr .

For the initial data, we assume ‖Y0 − A0‖ ≤ δ.

We also assume that F (t, · ) is Lipschitz continuous and bounded,

‖F (t,Y )− F (t, Ỹ )‖ ≤ L‖Y − Ỹ ‖ for all Y , Ỹ ∈ Cn×n,

‖F (t,Y )‖ ≤ B for all Y ∈ Cn×n.
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The exactness result

Theorem (Lubich and Oseledets (2014))

If
Ȧ(t) = F (t), A(0) = A0,

with A(t) ∈Mr for all t ∈ [0,T ], and if Y (0) = A0, then the
splitting scheme is exact.

A similar exactness result holds also for tensor trains.
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Proof (Lubich and Oseledets (2014))
We have

A1 = A0 + ∆A, A0,A1 ∈Mr ,

Y0 = A0 = U0S0V
∗
0 ,

U1U
∗
1A1 = A1, A0V0V

∗
0 = A0.

Then, one step of the splitting scheme gives

Y1 = U1S1V
∗
1

= U0S0V
∗
0 + ∆AV0V

∗
0 − U1U

∗
1 ∆AV0V

∗
0 + U1U

∗
1 ∆A

= A0 + (A1 − A0)V0V
∗
0 − U1U

∗
1 (A1 − A0)V0V

∗
0 + U1U

∗
1 (A1 − A0)

= A0 + A1V0V
∗
0 − A0 − A1V0V

∗
0 + U1U

∗
1A0 + A1 − U1U

∗
1A0

= A1.
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The error estimate

Theorem
Under the stated assumptions, the error of the splitting scheme at
tk = kh is bounded by

‖Yk − A(tk)‖ ≤ c0δ + c1ε+ c2h, tk ≤ T ,

where ci depend only on L, B, and T .

Standard error analysis for splitting methods, in contrast, would
give an error estimate of the form

‖Yk − Y (tk)‖ ≤ c0δ + c3
h

ε
.
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Proof idea

For the local error estimate,

1 Construct X (t), with Ẋ (t) = M(t,X (t)), close to A(t).

2 Show that R(t,Y ) introduces small perturbation in each
substep.

3 Use preservation of singular vectors to isolate the
perturbations, get splitting scheme for Ẋ plus perturbation.

4 Apply exactness result for Ẋ .
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The difficult part

Let
X (t) = ΦM(t, 0,X0) ∈Mr ,

with ‖X0 − Y0‖ ≤ h(4BLh + 2ε), be the solution to the problem
with R = 0.

Lemma
Under the same assumptions as previously, we have

‖Y1 − X (h)‖ ≤ h(9BLh + 4ε).
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Given that. . .

• We assumed ‖X (0)− Y0‖ = hO(ε+ h).

• The lemma gives ‖Y1 − X (h)‖ = hO(ε+ h).

• By Grönwall’s lemma,
‖ΦF (h, 0,Y0)− X (h)‖ ≤ eLh‖X (0)− Y0‖+ hεeLh.

• ⇒ local error ‖ΦF (h, 0,Y0)− Y1‖ = hO(h + ε).

• By ‖Y0 − A0‖ ≤ δ and a Lady Windermere’s fan argument,
global error = O(δ + h + ε).
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In higher dimensions

Low-rank representations of the tensor
A ∈ Cn1×···×nd :

Tucker Hierarchical Tucker Tensor train

rd + drn drn + dr3 dr2n dofs.
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Extension to tensor trains

Projection to tangent space of TT-manifold reads

P(Y ) =
d−1∑
i=1

(P+
i (Y )− P−i (Y )) + P+

d (Y ), with

P+
i = P≤i−1P≥i+1, P−i = P≤iP≥i+1.

Corresponding splitting scheme has 2d − 1 substeps.

Elements of a tensor can be arranged in a matrix (matrix
unfolding).

TT splitting scheme can be written as sequence of matrix splitting
schemes.
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Extension to tensor trains

Write the d-dimensional tensor Y as the matrix Y 〈1〉, with first
mode as rows and other (d − 1) modes as columns.

Action of d-dimensional TT splitting scheme:

• Apply first two steps of matrix splitting scheme.

• Solve third step approximately using (d − 1)-dimensional TT
splitting scheme.

• ⇒ Error estimate follows by induction.

This can be done without forming the matrices explicitly.
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Numerical example

Quantum harmonic oscillator in 2d,

iut(x , t) = −1

2
∆u(x , t) + V (x)u(x , t), x ∈ R2, t > 0,

u(x , 0) = π−1/2 exp
(1

2
x2

1 +
1

2
(x2 − 1)2

)
,

with V (x) =
1

2
xT
(

2 −1
−1 3

)
x .

Discretise with Fourier collocation, solve subproblems with Krylov
subspace method.

Lipschitz constant is nasty, ∼ ∆x−2.
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Numerical example

Since the error estimate involve
the Lipschitz constant, we should
need tiny time steps for PDEs
(h� ∆x2).

Experimental experience suggests
otherwise.
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h = 0.02 (×), h = 0.01 (plain).
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Summary and outlook

• Low-rank manifolds are strongly curved where singular values
are small. This makes time-integration difficult.

• For the projector-splitting integrator we proved an O(h + ε)
error estimate, independent of the included singular values.

• Such an estimate is not possible for standard methods, as
Lip(P( · )) ∼ σ−1

r .

• Estimate depends on L = Lip(F ), and thus not applicable for
PDEs.
– Still we get good results also for PDEs.

27 / 32



Introduction
The splitting scheme

Error estimates
Extension to tensor trains

Conclusion

Proof of the lemma (1/5)
We can write

Ẏ (t) = P(Y (t))F (t,Y (t))

= Ẋ (t) + ∆(t,Y (t)),

with

∆(t,Y ) = F (t,Y )− F (t,X (t))+

− P⊥(Y )R(t,Y ) + R(t,X (t)),

and

‖∆(t,Y (t))‖ ≤ L ‖Y (t)− X (t)‖︸ ︷︷ ︸
≤cBh

+2ε ≤ cBLh + 2ε.

– Use exactness result for Ẋ and bound effect of small
perturbation ∆.
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Proof of the lemma (2/5)

Ẏ±i (t) = ±P±i (Y±i (t))
(
Ẋ (t) + ∆(t,Y±i (t))

)
= G±i (t,Y±i (t)) + ∆±i (t,Y±i (t)).

By the exactness result,

X (h) = ΦG+
2

(h, 0,ΦG−
1

(h, 0,ΦG+
1

(h, 0,X0))).

Gröbner–Alekseev lemma yields

Y±i (h) = ΦG±
i

(h, 0,Y±i (0))+

∫ h

0
∂ΦG±

i
(h, t,Y±i (t))∆±i (t,Y±i (t))dt︸ ︷︷ ︸

hE±
i

,

⇒ Y1 = ΦG+
2

(h, 0,ΦG−
1

(h, 0,ΦG+
1

(h, 0,Y0) + hE+
1 ) + hE−1 ) + hE+

2 .
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Proof of the lemma (3/5)

Let Y = Y±i (t), Z = ±∆(t,Y±i (t)), and bound the integrand

K±i (τ) = ∂ΦG±
i

(h, τ,Y )P±i (Y )Z

= lim
θ→0

1

θ

(
ΦG±

i
(h, τ,Y + θP±i (Y )Z )− ΦG±

i
(h, τ,Y )

)
.

Using K±i (h) = P±i (Y )Z and K̇±i (τ) = 0 (next slide), we get

‖K±i (t)‖ = ‖P±i (Y )Z‖ = ‖P±i (Y±i (t))∆(t,Y±i (t))‖ ≤ ‖∆(t,Y±i (t))‖,

and thereby,
‖E±i ‖ ≤ cBLh + 2ε.
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Proof of the lemma (4/5)
Important properties of the projections:

P±i (ΦF±
i

(t, s,Y )) = P±i (Y ) for all Y ∈Mr ,

P±i (Y + P±i (Y )Z ) = P±i (Y ) for all Y ∈Mr ,Z ∈ Cn×n.

Using this, the derivative of K±i follows as

K̇±i (τ) = − lim
θ→0

1

θ

(
G±i (τ,ΦG±

i
(h, τ,Y + θP±i (Y )Z ))

− G±i (τ,ΦG±
i

(h, τ,Y ))
)

= ∓ lim
θ→0

1

θ

(
P±i (ΦG±

i
(h, τ,Y + θP±i (Y )Z ))Ẋ (τ)

− P±i (ΦG±
i

(h, τ,Y ))Ẋ (τ)
)

= ∓ lim
θ→0

1

θ

(
P±i (Y )Ẋ (τ)− P±i (Y )Ẋ (τ)

)
= 0.
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Proof of the lemma (5/5)
E±i were created under the action of projections, and P+

1 and P+
2

are “subprojections” of P−1 . Hence,

d

dt

(
ΦG+

2
(t, 0, Ỹ + hE−1 )− ΦG+

2
(t, 0, Ỹ )

)
= 0; E−1 = P+

2 (Ỹ )E−1 ,

d

dt

(
ΦG+

1
(t, 0,Y0 + hE+

1 )− ΦG+
1

(t, 0,Y0)
)

= 0; E+
1 = P+

1 (Y0)E+
1 ,

and Y1 = ΦG+
2

(h, 0,ΦG−
1

(h, 0,ΦG+
1

(h, 0,Y0 +hE+
1 )))+hE−1 +hE+

2 .

By the exactness result, with X0 = Y0 + hE+
1 ,

Y1 = ΦG+
2

(h, 0,ΦG−
1

(h, 0,ΦG+
1

(h, 0,X0))) + hE−1 + hE+
2

= X (h) + h(E−1 + E+
2 ), ‖E−1 + E+

2 ‖ ≤ (9BLh + 4ε).
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