Time-stepping of low-rank approximations with small singular values

Emil Kieri

 \Rightarrow

Avdelningen för beräkningsvetenskap Institutionen för informationsteknologi Uppsala universitet Hausdorff Center for Mathematics Institute for Numerical Simulation University of Bonn

Joint work with

Christian Lubich and Hanna Walach

Mathematisches Institut Universität Tübingen

March 23, 2016

Outline

- **2** The splitting scheme
- **3** Error estimates
- **4** Extension to tensor trains

5 Conclusion

Abstract

We consider low-rank approximation of time-dependent problems.

When singular values in the solution tend to zero, standard time-stepping schemes for low-rank approximation of differential equations break down.

We prove that, under mild assumptions, a new time-stepping scheme is robust in this situation.

What we are after

We want to solve parabolic and Schrödinger-type PDEs in high dimensions,

$$(-\mathrm{i})u_t = \Delta u + f(x, u), \quad x \in \mathbb{R}^d.$$

This has been done with low-rank methods,

- MCTDH¹ (Tucker format) standard approach for TDSE.
- Multi-level MCTDH² (\sim Hierarchical Tucker) for higher dimensions.
- Tensor trains have also been used.

It seems to work, also for "real" problems, but theory is incomplete.

¹Meyer et al. (1990)

²Wang and Thoss (2003)

What we are after

For most of this talk, we will stick to the ODE

$$\dot{A}(t) = F(t, A(t)), \qquad A(0) = A_0, \quad A(t) \in \mathbb{C}^{n \times n}.$$

The low-rank manifold

The set

$$\mathcal{M}_r = \{X \in \mathbb{C}^{n \times n} : \operatorname{rank}(X) = r\}$$

is a smooth manifold, embedded in $\mathbb{C}^{n \times n}$. However, its curvature depends in a nasty way on σ_r :

$$X, Y \in \mathcal{M}_r, \sigma_r(X) \ge \rho > 0, ||X - Y|| \le \frac{1}{8}\rho,$$

 $B \in \mathbb{C}^{n \times n},$
 $P(X)$ orthogonal projection onto $T_X \mathcal{M}_r$. Then,³

$$\|(P(Y) - P(X))B\| \le 8\rho^{-1}\|Y - X\|\|B\|_2.$$

³Koch and Lubich (2007).

Conflict of interests

- If σ_r small, approximation manifold strongly curved.
- If σ_{r+1} large, approximation error large.
- Reasonably, $\sigma_r \approx \sigma_{r+1}$.

Dynamical low-rank approximation

Consider the matrix ODE

$$\dot{A}(t) = F(t, A(t)), \qquad A : [0, T] \to \mathbb{C}^{n \times n}.$$

We seek a low-rank approximation $Y(t) \in \mathcal{M}_r$ to A(t). Y represented as skinny SVD,

$$Y = USV^*, \qquad U, V \in \mathbb{C}^{n \times r}, \qquad S \in \mathbb{C}^{r \times r}.$$

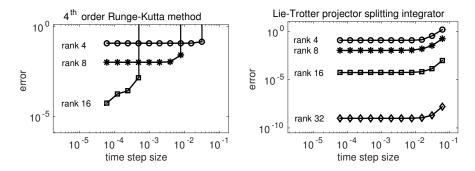
Gauge conditions $U^*\dot{U} = V^*\dot{V} = 0$ yields

$$\begin{split} \dot{U} &= (I - UU^*)F(t, Y)VS^{-1}, \\ \dot{S} &= U^*F(t, Y)V, \\ \dot{V} &= (I - VV^*)F(t, Y)^*US^{-*}. \end{split}$$

– Breaks down when $\sigma_r(Y) \rightarrow 0$. Not a feasible way.

Illustration of the stiffness

$$\dot{A} = W_1 A + A + A W_2^T$$
, $A(0) = \operatorname{diag} \{2^{-j}\}, \quad W_i + W_i^T = 0.$



Low-rank evolution equation

We have

 $\dot{A}(t) = F(t, A(t)), \qquad A(0) = A_0, \qquad A(t) \in \mathbb{C}^{n \times n},$

which we approximate by

$$Y(t) \in \mathcal{M}_r = \{Y \in \mathbb{C}^{n \times n} : \operatorname{rank}(Y) = r\}.$$

Apply the Dirac–Frenkel time-dependent variational principle, i.e., a Galerkin condition on the tangent space.

Let P(Y) orthogonal projection onto $T_Y \mathcal{M}_r$, and $\dot{Y}(t) = P(Y(t))F(t, Y(t)), \qquad Y(0) = Y_0.$ Equivalently, find $\dot{Y}(t) \in T_Y \mathcal{M}_r$ such that

$$\langle Z, \dot{Y}(t) \rangle = \langle Z, F(t, Y(t)) \rangle \quad \forall Z \in T_{Y(t)} \mathcal{M}_r.$$

Low-rank evolution equation

$$\dot{Y}(t) = P(Y(t))F(t, Y(t)), \qquad Y(0) = Y_0.$$

Compact storage of the form $Y = USV^*$.

Lipschitz constant of P(Y) is proportional to the curvature of \mathcal{M}_r , and thus to σ_r^{-1} .

Standard time-stepping schemes break down as $\sigma_r \rightarrow 0$.

The splitting scheme

P(Y) has the representation⁴

$$P(Y) = P_1^+(Y) - P_1^-(Y) + P_2^+(Y), \quad \text{with}$$
$$P_1^+(Y)Z = ZVV^*, \quad P_1^-(Y)Z = UU^*ZVV^*, \quad P_2^+(Y)Z = UU^*Z.$$

Let
$$F_i^{\pm}(t, Y) = \pm P_i^{\pm}(Y)F(t, Y).$$

Then, the splitting scheme⁵ reads

$$Y_1 = \Phi_{F_2^+}(h, 0, \Phi_{F_1^-}(h, 0, \Phi_{F_1^+}(h, 0, Y_0))).$$

⁴Koch and Lubich (2007).

⁵Lubich and Oseledets (2014).

The splitting scheme

More practically stated,

• $\dot{K}(t) = F(t, K(t)V_0^*)V_0, \qquad K(0) = U_0S_0,$

•
$$[U_1, \widehat{S}_1] = \operatorname{qr}(K(h)),$$

•
$$\dot{S}(t) = -U_1^*F(t, U_1S(t)V_0^*)V_0, \qquad S(0) = \widehat{S}_1,$$

•
$$\tilde{S}_0 = S(h)$$
,

- $\dot{L}(t) = F(t, UL(t)^*)^* U_1, \qquad L(0) = V_0 \tilde{S}_0^*,$
- $[V_1, S_1^*] = qr(L(h)).$
- Singular vectors preserved during some substeps.

For an accurate low-rank solution

- Must exist X(t) ∈ M_r such that ||A(t) X(t)|| is small (approximability).
- Approximation Y(t) must be close to X(t) (or A(t)).
- Time-stepping must be accurate, $Y_k \approx Y(kh)$ with *h* the time step.

We assume approximability and prove the rest, i.e., we show that $||A(kh) - Y_k||$ is small.

What we assume

F(t, Y) maps almost onto the tangent space,

$$F(t, Y) = M(t, Y) + R(t, Y),$$

where

 $M(t, Y) \in T_Y \mathcal{M}_r$ and $||R(t, Y)|| \le \varepsilon$ for all $Y \in \mathcal{M}_r$. For the initial data, we assume $||Y_0 - A_0|| \le \delta$.

We also assume that $F(t, \cdot)$ is Lipschitz continuous and bounded,

$$\begin{split} \|F(t,Y) - F(t,\tilde{Y})\| &\leq L \|Y - \tilde{Y}\| \quad \text{for all } Y, \tilde{Y} \in \mathbb{C}^{n \times n}, \\ \|F(t,Y)\| &\leq B \quad \text{for all } Y \in \mathbb{C}^{n \times n}. \end{split}$$

The exactness result

Theorem (Lubich and Oseledets (2014)) If

$$\dot{A}(t)=F(t), \qquad A(0)=A_0,$$

with $A(t) \in M_r$ for all $t \in [0, T]$, and if $Y(0) = A_0$, then the splitting scheme is exact.

A similar exactness result holds also for tensor trains.

Proof (Lubich and Oseledets (2014)) We have

$$egin{aligned} & A_1 = A_0 + \Delta A, & A_0, A_1 \in \mathcal{M}_r, \ & Y_0 = A_0 = U_0 S_0 V_0^*, \ & U_1 U_1^* A_1 = A_1, & A_0 V_0 V_0^* = A_0. \end{aligned}$$

Then, one step of the splitting scheme gives

$$\begin{split} Y_1 &= U_1 S_1 V_1^* \\ &= U_0 S_0 V_0^* + \Delta A V_0 V_0^* - U_1 U_1^* \Delta A V_0 V_0^* + U_1 U_1^* \Delta A \\ &= A_0 + (A_1 - A_0) V_0 V_0^* - U_1 U_1^* (A_1 - A_0) V_0 V_0^* + U_1 U_1^* (A_1 - A_0) \\ &= A_0 + A_1 V_0 V_0^* - A_0 - A_1 V_0 V_0^* + U_1 U_1^* A_0 + A_1 - U_1 U_1^* A_0 \\ &= A_1. \end{split}$$

17 / 32

The error estimate

Theorem

Under the stated assumptions, the error of the splitting scheme at $t_k = kh$ is bounded by

$$\|Y_k - A(t_k)\| \leq c_0 \delta + c_1 \varepsilon + c_2 h, \qquad t_k \leq T,$$

where c_i depend only on L, B, and T.

Standard error analysis for splitting methods, in contrast, would give an error estimate of the form

$$\|Y_k - Y(t_k)\| \leq c_0 \delta + c_3 \frac{h}{\varepsilon}.$$

Proof idea

For the local error estimate,

- **1** Construct X(t), with $\dot{X}(t) = M(t, X(t))$, close to A(t).
- **2** Show that R(t, Y) introduces small perturbation in each substep.
- **3** Use preservation of singular vectors to isolate the perturbations, get splitting scheme for \dot{X} plus perturbation.
- **4** Apply exactness result for \dot{X} .

The difficult part

Let

$$X(t) = \Phi_M(t, 0, X_0) \in \mathcal{M}_r,$$

with $||X_0 - Y_0|| \le h(4BLh + 2\varepsilon)$, be the solution to the problem with R = 0.

Lemma

Under the same assumptions as previously, we have

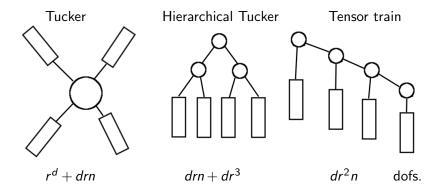
$$||Y_1 - X(h)|| \le h(9BLh + 4\varepsilon).$$

Given that...

- We assumed $||X(0) Y_0|| = h \mathcal{O}(\varepsilon + h)$.
- The lemma gives $||Y_1 X(h)|| = h O(\varepsilon + h)$.
- By Grönwall's lemma, $\|\Phi_F(h,0,Y_0) - X(h)\| \le e^{Lh} \|X(0) - Y_0\| + h\varepsilon e^{Lh}.$
- \Rightarrow local error $\|\Phi_F(h, 0, Y_0) Y_1\| = h \mathcal{O}(h + \varepsilon).$
- By ||Y₀ − A₀|| ≤ δ and a Lady Windermere's fan argument, global error = O(δ + h + ε).

In higher dimensions

Low-rank representations of the tensor $A \in \mathbb{C}^{n_1 \times \cdots \times n_d}$:



Extension to tensor trains

Projection to tangent space of TT-manifold reads

$$P(Y) = \sum_{i=1}^{d-1} (P_i^+(Y) - P_i^-(Y)) + P_d^+(Y), \quad \text{with}$$
$$P_i^+ = P_{\leq i-1} P_{\geq i+1}, \quad P_i^- = P_{\leq i} P_{\geq i+1}.$$

Corresponding splitting scheme has 2d - 1 substeps.

Elements of a tensor can be arranged in a matrix (matrix unfolding).

TT splitting scheme can be written as sequence of matrix splitting schemes.

Extension to tensor trains

Write the *d*-dimensional tensor Y as the matrix $Y^{(1)}$, with first mode as rows and other (d-1) modes as columns.

Action of *d*-dimensional TT splitting scheme:

- Apply first two steps of matrix splitting scheme.
- Solve third step approximately using (*d* − 1)-dimensional TT splitting scheme.
- \Rightarrow Error estimate follows by induction.

This can be done without forming the matrices explicitly.

Numerical example

Quantum harmonic oscillator in 2d,

$$egin{aligned} \mathrm{i} u_t(x,t) &= -rac{1}{2}\Delta u(x,t) + V(x)u(x,t), \qquad x\in \mathbb{R}^2, \ t>0, \ u(x,0) &= \pi^{-1/2}\exp\Big(rac{1}{2}x_1^2 + rac{1}{2}(x_2-1)^2\Big), \end{aligned}$$

with
$$V(x) = \frac{1}{2}x^T \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix} x$$

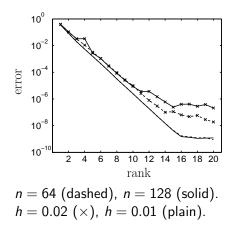
Discretise with Fourier collocation, solve subproblems with Krylov subspace method.

Lipschitz constant is nasty, $\sim \Delta x^{-2}$.

Numerical example

Since the error estimate involve the Lipschitz constant, we should need tiny time steps for PDEs $(h \ll \Delta x^2)$.

Experimental experience suggests otherwise.



Summary and outlook

- Low-rank manifolds are strongly curved where singular values are small. This makes time-integration difficult.
- For the projector-splitting integrator we proved an $O(h + \varepsilon)$ error estimate, independent of the included singular values.
- Such an estimate is not possible for standard methods, as $\operatorname{Lip}(P(\,\cdot\,)) \sim \sigma_r^{-1}$.
- Estimate depends on L = Lip(F), and thus not applicable for PDEs.
 - Still we get good results also for PDEs.

Proof of the lemma (1/5)

We can write

$$\dot{Y}(t) = P(Y(t))F(t, Y(t))$$

= $\dot{X}(t) + \Delta(t, Y(t)),$

with

$$\Delta(t, Y) = F(t, Y) - F(t, X(t)) + P^{\perp}(Y)R(t, Y) + R(t, X(t)),$$

and

$$\|\Delta(t, Y(t))\| \leq L \underbrace{\|Y(t) - X(t)\|}_{\leq cBh} + 2\varepsilon \leq cBLh + 2\varepsilon.$$

– Use exactness result for \dot{X} and bound effect of small perturbation Δ .

Proof of the lemma (2/5)

$$egin{aligned} \dot{Y}_i^\pm(t) &= \pm P_i^\pm(Y_i^\pm(t)) \Big(\dot{X}(t) + \Delta(t,Y_i^\pm(t)) \Big) \ &= G_i^\pm(t,Y_i^\pm(t)) + \Delta_i^\pm(t,Y_i^\pm(t)). \end{aligned}$$

By the exactness result,

$$X(h) = \Phi_{G_2^+}(h, 0, \Phi_{G_1^-}(h, 0, \Phi_{G_1^+}(h, 0, X_0))).$$

Gröbner-Alekseev lemma yields

$$Y_{i}^{\pm}(h) = \Phi_{G_{i}^{\pm}}(h, 0, Y_{i}^{\pm}(0)) + \underbrace{\int_{0}^{h} \partial \Phi_{G_{i}^{\pm}}(h, t, Y_{i}^{\pm}(t)) \Delta_{i}^{\pm}(t, Y_{i}^{\pm}(t)) dt}_{hE_{i}^{\pm}},$$

$$\Rightarrow Y_{1} = \Phi_{G_{2}^{\pm}}(h, 0, \Phi_{G_{1}^{-}}(h, 0, \Phi_{G_{1}^{+}}(h, 0, Y_{0}) + hE_{1}^{+}) + hE_{1}^{-}) + hE_{2}^{+}.$$

Proof of the lemma (3/5)

Let $Y = Y_i^{\pm}(t)$, $Z = \pm \Delta(t, Y_i^{\pm}(t))$, and bound the integrand $K_{i}^{\pm}(\tau) = \partial \Phi_{G^{\pm}}(h, \tau, Y) P_{i}^{\pm}(Y) Z$ $= \lim_{a\to\infty} \frac{1}{a} \Big(\Phi_{G_i^{\pm}}(h,\tau,Y+\theta P_i^{\pm}(Y)Z) - \Phi_{G_i^{\pm}}(h,\tau,Y) \Big).$ Using $K_i^{\pm}(h) = P_i^{\pm}(Y)Z$ and $\dot{K}_i^{\pm}(\tau) = 0$ (next slide), we get $\|K_{i}^{\pm}(t)\| = \|P_{i}^{\pm}(Y)Z\| = \|P_{i}^{\pm}(Y_{i}^{\pm}(t))\Delta(t, Y_{i}^{\pm}(t))\| \le \|\Delta(t, Y_{i}^{\pm}(t))\|,$ and thereby,

$$\|E_i^{\pm}\| \leq cBLh + 2\varepsilon.$$

Proof of the lemma (4/5)

Important properties of the projections:

$$\begin{split} & P_i^{\pm}(\Phi_{F_i^{\pm}}(t,s,Y)) = P_i^{\pm}(Y) \quad \text{for all } Y \in \mathcal{M}_r, \\ & P_i^{\pm}(Y + P_i^{\pm}(Y)Z) = P_i^{\pm}(Y) \quad \text{for all } Y \in \mathcal{M}_r, Z \in \mathbb{C}^{n \times n}. \\ & \text{Using this, the derivative of } K_i^{\pm} \text{ follows as} \end{split}$$

$$\begin{split} \dot{K}_{i}^{\pm}(\tau) &= -\lim_{\theta \to 0} \frac{1}{\theta} \Big(G_{i}^{\pm}(\tau, \Phi_{G_{i}^{\pm}}(h, \tau, Y + \theta P_{i}^{\pm}(Y)Z)) \\ &- G_{i}^{\pm}(\tau, \Phi_{G_{i}^{\pm}}(h, \tau, Y)) \Big) \\ &= \mp \lim_{\theta \to 0} \frac{1}{\theta} \Big(P_{i}^{\pm}(\Phi_{G_{i}^{\pm}}(h, \tau, Y + \theta P_{i}^{\pm}(Y)Z)) \dot{X}(\tau) \\ &- P_{i}^{\pm}(\Phi_{G_{i}^{\pm}}(h, \tau, Y)) \dot{X}(\tau) \Big) \\ &= \mp \lim_{\theta \to 0} \frac{1}{\theta} \Big(P_{i}^{\pm}(Y) \dot{X}(\tau) - P_{i}^{\pm}(Y) \dot{X}(\tau) \Big) = 0. \end{split}$$

Proof of the lemma (5/5)

 E_i^{\pm} were created under the action of projections, and P_1^+ and P_2^+ are "subprojections" of P_1^- . Hence,

$$\begin{split} &\frac{\mathrm{d}}{\mathrm{d}t} \Big(\Phi_{G_2^+}(t,0,\tilde{Y}+hE_1^-) - \Phi_{G_2^+}(t,0,\tilde{Y}) \Big) = 0; \quad E_1^- = P_2^+(\tilde{Y})E_1^-, \\ &\frac{\mathrm{d}}{\mathrm{d}t} \Big(\Phi_{G_1^+}(t,0,Y_0+hE_1^+) - \Phi_{G_1^+}(t,0,Y_0) \Big) = 0; \quad E_1^+ = P_1^+(Y_0)E_1^+, \\ &\text{and } Y_1 = \Phi_{G_2^+}(h,0,\Phi_{G_1^-}(h,0,\Phi_{G_1^+}(h,0,Y_0+hE_1^+))) + hE_1^- + hE_2^+. \\ &\text{By the exactness result, with } X_0 = Y_0 + hE_1^+, \end{split}$$

$$Y_{1} = \Phi_{G_{2}^{+}}(h, 0, \Phi_{G_{1}^{-}}(h, 0, \Phi_{G_{1}^{+}}(h, 0, X_{0}))) + hE_{1}^{-} + hE_{2}^{+}$$

= X(h) + h(E_{1}^{-} + E_{2}^{+}), $\|E_{1}^{-} + E_{2}^{+}\| \le (9BLh + 4\varepsilon).$