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I. A tale of two matrices
Consider the linear ODE system∗

y′ = [A[0] + f(t)A[1]]y, y(0) = y0 � 0 ∈ RN+1, 1>y0 = 1,

where |f(t)| ≤ 1,

A[0] =



−N 1 0 · · · · · · 0
N −N 2 0 · · · 0
0 N − 1 −N . . . . . . ...
... . . . . . . . . . . . . 0
0 · · · 0 2 −N N
0 · · · · · · 0 1 −N


,

A[1] =



N 1 0 · · · · · · 0
−N N − 2 2 0 · · · 0

0 −N + 1 N − 4 . . . . . . ...
... . . . . . . . . . . . . 0
0 · · · 0 −2 −N + 2 N
0 · · · · · · 0 −1 −N


.

∗A model of isomerization in a monomolecular framework.
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I.1 What are the eigenvalues?

Proposition Let BN = A[1] and set

(RN)k,` =

{
1, k ≥ `,
0, k > `,

k, ` = 0, . . . , N.

Then

RNBN =

[
BN−1 NeN
0> 0

]
RN ,

where eN ∈ RN is the N th unit vector.

Lemma The matrix A[1] is nilpotent.

Proof. By induction. Set

B̃N =

[
BN−1 NeN
0> 0

]
, hence B̃N = RNBNR

−1
N

is similar to BN .
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For any N ×N matrix S, t ∈ RN and m ≥ 0[
S t
0> 0

]m
=

[
Sm Sm−1t
0> 0

]
.

In our case

B̃N+1
N =

[
BN+1
N−1 NBNN−1eN
0> 0

]
= O

(because, by induction, BNN−1 = O) and A[1] = BN is nilpotent. 2

You will try in vain to use MATLAB to confirm the nilpotency of A[1] – essentially, for

N ≥ 10 MATLAB produces rubbish. The reason is that this is an example of a twisted

Toeplitz matrix∗ with truly humongous pseudospectrum and great sensitivity to perturba-

tions.
∗J. Chapman & L.N. Trefethen, “Wave packet pseudomodes of twisted Toeplitz matrices”,
Comm. Pure & Appld Maths 57 (2004), 1233–1264.
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Pseudospectra of A[1] for N = 25 and N = 400. (Courtesy of Nick Trefethen.)

Unlike MATLAB, MAPLE gives zero eigenvalues because it uses integer arithmetic. But it

is useless for large N . . .
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Lemma The spectrum of A[0] is {−2r : r = 0,1, . . . , N} and the eigen-
vector vr corresponding to −2r is

vr,m =


(−1)m

( r
m

)
2F1

[
−N + r,m;
r −m+ 1;

− 1

]
, m = 0, . . . , r

(−1)r
(N − r
m− r

)
2F1

[
−N +m,−r;
m− r + 1;

− 1

]
, m = r, . . . , N.

The proof follows by showing that

Vr(t) :=
N∑

m=0

vr,mt
m = (1 + t)N+λ/2(1− t)−λ/2.

Vr is a polynomial and this is true only if λ = −2r – the exact form of vr
follows from expansion of the term on the right.
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Let V be the matrix of the above eigenvectors and denote by U the matrix
of left eigenvectors s.t. U = V −1. Then

Ur,m =
1

2N

(
N
r

)
(
N
m

)Vm,r, m, r = 0, . . . , N,

therefore V −1 = 2−NV . More importantly, etA
[0]

= 2−NV etΛV , where
Λ = diag (0,−2, . . . ,−2N). Likewise, etA

[1]
= ZC−1etECZ̃−1, where

E=


0 1 0 · · · 0
0 0 1 . . . ...
... . . . . . . 0
... 0 1
0 · · · · · · · · · 0

, C = diag [0!, 1!, . . . , N !],

Zm,n=

{
0, m ≤ n−1,

(−1)m−n
(
N−n
m−n

)
, m ≥ n, Z̃m,n =

{
0, m ≤ n−1,(
N−n
m−n

)
, m ≥ n.
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I.2 Solvability et. al

The motivation to this work was the observation that the Magnus expan-
sion for y′ = [A[0] + f(t)A[1]]y converges with much greater radius of
convergence than predicted by theory.∗

Our ODE system originates in monomolecular reactions and such systems
are known to be solvable explicitly. Herewith a proof, valid for more general
systems. Recall that a Lie algebra g is solvable if there exists M ≥ 0 s.t.
g[M ] = {0}, where g[0] = g and g[k+1] = [g[k], g[k]].

The solution of our linear ODE lives in the free Lie algebra F generated by
A[0], A[1]. And here cometh magic:

[A[0], A[1]] = −2A[1].

Therefore dim g[1] = 1, hence it is a commutative algebra and g[2] = {0}.
The algebra is solvable!
∗K. Kormann & S. MacNamara, “Error control for exponential integration of the Master
Equation”, Technical Report (2015).
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With greater generality, consider y′ = [α0(t)B0 + α1(t)B1]y such that
[B0, B1] = a0B0 + a1B1: we have a 2-dimensional free Lie algebra F .
We define the natural embedding η : F → R2 s.t.

η(β0B0 + β1B1) =

[
β0
β1

]
.

Therefore η([γ0B0 + γ1B1, β0B0 + β1B1]) = Cγβ, where

Cγ =

[
−γ1a0 γ0a0
γ1a1 −γ0a1

]
.

It can be proved easily that

Cnγ = (−ρ)nCγ where ρ = −(γ1a0 + γ1a1).

We will prove that the solution of the ODE is y(t) = eσ0(t)B0eσ1(t)B1y0

for some functions σ0, σ1 which obey a nonlinear ODE.
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Differentiating,

y′=(σ′0B0eσ0B0eσ1B1+σ′1eσ0B0B1eσ1B1)y = (σ′0B0+σ′1Adσ0B0
B1)y,

where AdPQ = ePQe−P . Since AdPQ =
∑∞
m=0(1/m!)admPQ, using

the natural embedding

η
(
σ′0B0 + σ′1Adσ0B0

B1

)
= σ′0

[
1
0

]
+ σ′1

∞∑
m=0

σm0
m!

Cm[1,0]

[
0
1

]

=σ′0

[
1
0

]
+ σ′1eσ0C[1,0]

[
0
1

]

=σ′0

[
1
0

]
+

σ′1
a0γ1 + a1γ0

 a0γ0

[
1− e−σ0(a0γ1+a1γ0)

]
a0γ1 + a1γ0e−σ0(a0γ1+a1γ0)

 =

[
α0
α1

]
.

The outcome is a set of two coupled nonlinear ODEs,

σ′0 + σ′1
a0γ0

[
1− e−σ0(a0γ1+a1γ0)

]
a0γ1 + a1γ0

=α0,

σ′1
a0γ1 + a1γ0e−σ0(a0γ1+a1γ0)

a0γ1 + a1γ0
=α1.
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II. Master equations
Master equations in chemistry and physics describe the time evolution of
a system that can be in exactly one of possible states at any time t ≥ 0
and where the variable is the probability of being in a given state. Such
equations are of the form

y′ = A(t)y, t ≥ 0, y(0) = y0 � 0 ∈ RN+1, 1>y0 = 1,

where 1>A(t) = 0>.∗ It is easy to prove that the solution y(t) is a prob-
ability distribution for every t ≥ 0: yk(t) ≥ 0 and 1>y(t) ≡ 1.

Master equations are the differential form of the Chapman–Kolmogorov
equation from stochastic analysis: if f1, . . . , fn are stochastic processes
with joint probability pi1,...,in(f1, . . . , fn) then

pi1,...,in−1
(f1, . . . , fn−1) =

∫ ∞
−∞

pi1,...,in(f1, . . . , fn) dfn.

∗T. Jahnke & W. Huisinga, “Solving the chemical master equation for monomolecular
reaction systems analytically”, J. Math. Biol. 54 (2007), 1–26.
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Many chemists believe that for N � 1 the only sensible method is Monte
Carlo. It is our business to prove them wrong.

Another council of despair is approximating a continuous-time Markov chain,
is by a discrete-time Markov chain.∗ In the simplest case, let

ρ(t) = min{a0,0(t), . . . , aN,N(t)}

and set P (t) = I + 1
ρ(t)A(t). Given hn = ρ−1(tn) and tn = tn−1 + hn,

we set

yn = P (tn−1)yn−1,

a 1st-order method. Note that ‖P‖1 = 1 and 0 ≤ Pk,` ≤ 1, hence positiv-
ity.

∗R.B. Sidje, K. Burrage & S. MacNamara, ”Inexact uniformization method for computing
transient distributions of Markov chains”, SIAM J. Sci. Comput. 29 (2007), 2562–2580.
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Of particular interest are matricesA(t) which are graph Laplacians: Ak,k ≤ 0
and Ak,` ≥ 0 for k 6= `.

Let m̃N be the set of such (N + 1)× (N + 1) matrices. |f(t)| ≤ 1 im-
plies that A[0] + f(t)A[1] ∈ m̃N so, unknowingly, we have been talking of
graph Laplacians.

Graph Laplacians, their eigenvalues and eigenvectors, have huge impor-
tance in graph and network theory.

II.1 Why graph Laplacians?

A huge number of processes in biochemical systems (enzyme kinetics,
allosteric enzymes, ion channels, G-protein coupled receptors, gene regu-
lation – enough?) can be depicted as a network: Next slide: an example
of a labelled graph and the corresponding graph Laplacian
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A network:
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Its graph Laplacian:

A =


−(α0,1+α0,2+α0,3) α1,0 α2,0 α3,0

α0,1 −(α1,0+α1,2+α1,3) α2,1 α3,1

α0,2 α1,2 −(α2,0+α2,1+α2,3) α3,2

α0,3 α1,3 α2,3 −(α3,0+α3,1+α3,2)

.
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Graph Laplacians (which are also related to the Kirkchhoff Theorem and
electrical circuits∗) have many extra features, e.g. their spectrum lives in
C−. According to Tutte’s Matrix-Tree Theorem, the stationary state of
y′ = A(t)y, where A(t) is a graph Laplacian and y0 � 0, is positive.†

OUR GOAL: Given the linear system

y′ = A(t)y, t ≥ 0, y(0) = y0 � 0 ∈ RN+1,

where A is a graph Laplacian (or, with greater generality, 1>A(t) ≡ 0>)
and 1>y0 = 1, find a numerical solution yn ≈ y(tn), 0 = t0 < t1 < · · ·,
such that

(a) 1>yn ≡ 1, n ∈ N;

(b) yn � 0, n ∈ N.
∗J. Gunawardena, “A linear framework for time-scale separation in nonlinear biochemi-
cal systems”, PLoS ONE 7 (2012), e36321; I. Mirzaev & J. Gunawardena, “Laplacian
dynamics on general graphs”, Bull. Math. Bio. 75 (2013), 2118–49.
†A(t) being singlular, this is a statement about the eigenvector space corresponding to
zero eigenvalues.
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II.2 The devil’s dilemma: (a) or (b)?

Conserving positivity is very difficult with methods of order ≥ 2∗ while con-
serving linear invariants is trivial. Thus, any reasonable multistep, Runge–
Kutta or Lie-group method conserves (a) and fails on (b). What to do?

We can conserve (b) by a simple change of variables, yk(t) = eθk(t),
k = 0, . . . , N . This results in the nonlinear ODE

θ′k =
N∑
`=0

Ak,`(t)eθ`−θk, k = 0, . . . , N

and positivity is built-in – except that (a) becomes a nasty nonlinear invari-
ant,

N∑
k=0

eθk(t) ≡ 1,

which is difficult to enforce and of questionable stability.
∗C. Bolley & M. Crouzeix, “Conservation de la positivité lors de la discrétisation des
problèmes d’évolution paraboliques”, RAIRO Anal. Numér. 12 (1978), 237–245.
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II.3 Lie-group methods

Back to square number one: conserve (a) automatically and do ‘something’
about (b). Given that the system is linear, we use a Lie-group method. Note
that mN , the set of (N + 1)× (N + 1) matrices A s.t. 1>A = 0>, is a
Lie algebra.∗ The corresponding Lie group MN is the set of matrices B
s.t. 1>B = 1>.

We have three options:
• Magnus,
• Fer,
• Canonical coordinates of the second kind (Marthinsen & Owren).
They all map mN to MN . But. . . what about positivity?

∗The set m̃N of graph Laplacians is a cone in mN .
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III. Flags of methods
No specific Lie-group is method can be assured of producing yn � 0. How-
ever, all such methods converge, hence for sufficiently large order, once
the error is sufficiently small, if yn−1 �� 0, they are assured to produce
yn � 0.

Similarly to flag manifolds, we say that a set of numerical methods {Mr,h}r
?

r=1
is a flag if

1. EachMr,h is of order pr, i.e.

Mr,h[tn−1,y(tn−1)]− y(tn) = O(hpk+1),

where tn = tn−1 + h;

2. p1 < p2 < · · ·, hence limr→∞ pr =∞;

3. Each method Mr+1,h[tn−1,yn−1] can be obtained with marginal
cost utilising the computations that have led toMr,h[tn−1,yn−1].

18



III.1 Flag Fer?

We have tried to construct flag methods for Fer and for CCSK – the problem
is in recycling past values. Fer is particularly enticing: with exact integration

B0(t) =A(t),

Bm(t) =
∞∑
k=1

(−1)kk

(k + 1)!
adk∫ tn−1+h

tn−1

Bm−1(t), m ≥ 1,

Mr,h[tn−1,yn−1] = e

∫ tn−1+h
tn−1

B0(ξ) dξ · · · e
∫ tn−1+h
tn−1

Br−1(ξ) dξ
yn−1.

The order is pr = 2r+1 − 2 and we can recycle values,

Fr,h = e

∫ tn−1+h
tn−1

B0(ξ) dξ · · · e
∫ tn−1+h
tn−1

Br−1(ξ) dξ

⇒ Fr,h = Fr−1,he

∫ tn−1+h
tn−1

Br−1(ξ) dξ
, Mr,h = Fr,hyn−1.

The problem is discretising integrals: they must be all computed to order
pr? and this, plus all the exponentials, becomes prohibitively expensive.
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III.2 Flag Magnus

Given that Magnus is implemented in a time-symmetric manner, pk = 2k.
The idea is to discretise integrals from the outset, using a Gauss–Legendre
basis of order 2r?. For example, for r? = 3, we compute

A1, A3 = hA(tn−1 + (1
2 ∓

√
15

10 )h), A2 = hA(tn−1 + 1
2h);

B1 = A2, B2 =
√

15
3 (A3 −A1), B3 = 10

3 (A3 − 2A2 +A1);

Ω1 = B1 (order 2),

Ω2 = Ω1 + 1
12B3 + 1

12[B1, B2], (order 4),

Ω3 = Ω2 − 1
240[B2, B3]− 1

240[B2, [B1, B2]] + 1
360[B1, [B1, B3]],

(order 6);

Mr,h = eΩryn−1.
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Let Θ1 = Ω1, henceM1,h = eΘ1yn−1 and set

Θ2 = BCH(Ω2,−Θ1) = BCH
(
B1 + 1

12B3 + 1
12[B1, B2],−B1

)
=

1

12
B3 + 1

12[B1, B2] + 1
12[B1, B3] + 1

12[B1, [B1, B2]] = O
(
h3
)
.

Unlike Ω2, Θ2 is not time symmetric. HenceM2,h = eΘ2M1,h.

Likewise, Θ3 = BCH(Ω3,BCH(−Θ1,−Θ2)) and, after long computa-
tion,

Θ3 =− 1
24[B1,B3]− 1

24[B1,[B1,B2]]− 1
240[B2,[B1,B2]]+ 1

60[B1,[B1,B3]]

+ 1
72[B1,[B1,[B1,B2]]]+ 1

480[B1,[B2,B3]]+ 1
480[B1,[B2,[B1,B2]]]

+ 7
48[B1,[B1,[B1,B3]]]+ 1

288[B1,[B1,[B1,[B1,B2]]]]+O
(
h7
)
.

We haveM3,h = eΘ3M2,h and Θ3 = O
(
h4
)
.
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IV. Computing exponentials
IV.1 Padé approximations

Padé approximations are fully consistent with taking mN to MN . Note
that, in a flag method, we need to compute everything to the ‘top order’
pr?, otherwise computations cannot be recycled. Hence (and adding A-
stability to the mix: stiffness can be an issue!)

Θ1 = O(h) ⇒ eΘ1 = r3/3(Θ1) +O
(
h7
)
,

Θ2 = O
(
h3
)

⇒ eΘ2 = r1/1(Θ1) +O
(
h9
)
,

Θ3 = O
(
h4
)

⇒ eΘ3 = r1/1(Θ1) +O
(
h12

)
.

The downside is that computing r3/3(Θ1)v is expensive and either we
need to cube Θ1 – danger of large numbers and poor conditioning – or
factorize it at the price of complex arithmetic.
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IV.2 Generalised polar decomposition

Recall the basis facts:∗ g is a Lie algebra, G the corresponding Lie group,
and σ : g→ g an involutory inner automorphism: σ(X) = ΣXΣ−1, where
Σ ∈ G, Σ2 = I. Let

k = {X ∈ g : σ(X) = X}, p = {X ∈ g : σ(X) = −X}

be the sets of fixed points and anti-fix points of σ. Then

1. k is a Lie algebra, while p is a Lie triple space;

2. g = k⊕ p. Specifically, let X ∈ g. Then K = 1
2[X + σ(X)] ∈ k,

P = 1
2[X − σ(X)] ∈ p and X = K + P ;

3. It is possible to construct K̃ : R+ → k, P̃ : R+ → p, both in the free
Lie algebra generated by K and P , such that eX = eP̃eK̃ .

∗H.Z. Munthe-Kaas, G.R.W. Quispel & A. Zanna, “Generalized polar decompositions on
Lie groups with involutive automorphisms’, Found. Comput. Math. 3 ( 2001), 297–324.
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Choose Σ = I − 2e1e
>
1 , then P is nonzero in just its first row and column,

hence rankP ≤ 2 and eP̃ is trivial to compute. Then continue likewise
‘slicing’ the Lie algebra K with Σ = I − 2e2e

>
2 and so on – finally, we

have eX = eP̃1eP̃2 · · · eP̃r and each exponential can be evaluated trivially.

An improvement:∗ First bringX to an upper Hessenberg form using House-
holder reflections, X = HYH, hence eX = HeYH. Apply GPD to Y but
slicing from the bottom. Each iteration ‘contaminates’ the upper Hessen-
berg form with few entries at the bottom right of the matrix, which can be
dealt with using Givens rotations.

However. . . X ∈ mN 6→ Y ∈ mN and Householder reflections destroy the
structure of mN . What to do?
∗A. Iserles & A. Zanna, “Efficient computation of the matrix exponential by generalized
polar decompositions’, SIAM J. Numer. Anal. 42 (2005), 2218–2256.
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IV.3 Upper Hessenberg in mN

Firstly, we need to choose Σ ∈MN , Σ2 = I – and here is one:

Σ =


1 0 · · · 0 0
0 1 . . . ... ...
... . . . . . . 0 0
0 · · · 0 1 2
0 · · · 0 0 −1

.

In place of Householder, we adapt a Gaussian elimination-like algorithm
from Golub & Van Loan to mN . Let θ be the leading column ofX ∈ mN : of
course, 1>θ = 0. We seek a nonsingular matrix S1 s.t. the leading column
of X1 = S1XS

−1
1 is consistent with upper Hessenberg and X1 ∈ mN .

Unless θ has at least two nonzero elements, we chose S1 as a permutation
matrix. Otherwise use permutation to bring the largest two terms to θ0 and
θ1 and note that they are both nonzero.
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Let

a = −
1

θ1


0
θ0
θ2...
θN

, b =
1

θ0


0
θ1
θ2...
θN


and set

S1 = [e1, a, e2, · · · , eN ], S−1
1 = [e1, b, e2, · · · , eN ].

In order to continue and generate S2, S3, . . ., gradually, ‘building’ an up-
per Hessenberg matrix, we need some subtle combinatorial considerations
which we omit.
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IV.4 Upper Hessenberg commutators

Once X̃ is upper Hessenberg, the cost of linear algebra collapses:

K =


× × · · · · · · ×
× × · · · · · · ×
0 × . . . ×
... . . . . . . . . . ...
0 · · · 0 × ×

, P =



0 · · · 0 0 ×
0 · · · 0 0 ×
... ... ... ...
0 · · · 0 0 ×
0 · · · 0 × ×
0 · · · 0 × ×



⇒ [K,P ] =



0 · · · 0 0 0 ×
0 · · · 0 0 0 ×
... ... ... ... ...
0 · · · 0 0 0 ×
0 · · · 0 × × ×
0 · · · 0 × × ×


and so on. Few rogue elements under the first subdiagonal can be ‘cleaned’
by further low-dimensional transformations. The outcome is an algorithm
that computes eΘv in O

(
N3

)
flops to very high accuracy.
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V. Further thoughts
1. In GNI we are typically interested in conserving invariants, i.e. equal-

ities. What about conserving inequalities? Whether you call it GNI or
not, it is important. And difficult.

2. Master Equations are fascinating and they have received very little ex-
pert numerical attention. Ditto for the Kossakowski–Linblad Equation,
its quantum-mechanics counterpart, and, for the more ambitious, the
Kardar–Parisi–Zhang System, its scaling limit.

3. Letting N →∞, chemists obtain the differential Volterra equation

y′(t) =
∫ t

0
A(t− ξ)y(ξ) dξ.

Numerical theory?
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