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|. A tale of two matrices

Consider the linear ODE system*

y' = (A% 4+ ) Allly, y(0) =yg = 0 e RVTL 1Ty =1,
where | f(t)| < 1,

N 1 O -+ ... 0 |
N —N 2 0 O
410] — O N—1 —N
0] O 2 —N N
I 0 0O 1 —N_
[ N 1 0 0
—N N-2 2 0 0
A1) — O - N+1 N-4 :
5 . . 0
0] 0 -2 —N+2 N
I 0] 0 —1 —N

*A model of isomerization in a monomolecular framework.



.1 What are the eigenvalues?

Proposition Let By = Alll and set

1, k=>¢, _
(RN>]€,€_{07 k‘>€, k,f—O,...,N.

Then

By_1 Nen |
of 0 IV

where e € R” is the Nth unit vector.

RyBy =

Lemma The matrix All js nilpotent.

Proof. By induction. Set

Bny-1 Nepn

By = 0T 0

] ; hence BN = RNBNRR/']-

Is similar to Bjy.



Forany N x N matrix S, t € RN and m >0

s t]|" [sm gml
ol o| —|of 0 '
In our case
N+1 N
BN+1 _ LBy 1 NBy_jen | _ O
by ol 0
(because, by induction, BY_, = O) and Alll = By is nilpotent. 0

You will try in vain to use MATLAB to confirm the nilpotency of Alll — essentially, for
N > 10 MATLAB produces rubbish. The reason is that this is an example of a twisted
Toeplitz matrix* with truly humongous pseudospectrum and great sensitivity to perturba-
tions.

*J. Chapman & L.N. Trefethen, “Wave packet pseudomodes of twisted Toeplitz matrices”,
Comm. Pure & Appld Maths 57 (2004), 1233—-1264.
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Pseudospectra of Al for N = 25 and N = 400. (Courtesy of Nick Trefethen.)

Unlike MATLAB, MAPLE gives zero eigenvalues because it uses integer arithmetic. But it
is useless for large ...



Lemma The spectrum of A% js {—2r : r =0,1,..., N} and the eigen-
vector v, corresponding to —2r Is

i T —N 4+ r,m;
— m ’ S —
(—1) (m>2F1[r—m—|—1; 1], m=20,...,r
Vr.m = X«
’ N —r —N+m, —r;
—1)r ’ S— —
\( 1) (m—r)zFllm—T‘Fl; 1], m=r,...,N.

The proof follows by showing that
N

Ve() = Y vpmt™ = (1 + )N T2 —)=N2
m=0
Vr is a polynomial and this is true only if A = —2r — the exact form of v,

follows from expansion of the term on the right.



Let V' be the matrix of the above eigenvectors and denote by U the matrix
of left eigenvectors s.t. U = V1. Then

N
T,m—Q—N NN Ym,T M,T—O,...,N,
(m)
therefore V=1 = 2=V, More importantly, 1etA[O] — 2~ Nyet\y, where
N = diag (0,—2,...,—2N). Likewise, etA[ = zC—tetECZ=1 where
(001 0---0]
OO0 1--.:
E=|: ~-.-.0|, C=diagl0! 1!, ..., NI,
0O 1
O «vvvennn. 0
(0, m<n—1, P {O, m<n—1,
n = 9 o [(N— n — N—
TR (=DM (AT, m>n, mrEA(NIY), m>n




1.2 Solvability et. al

The motivation to this work was the observation that the Magnus expan-
sion for y' = [Al9) 4+ r(¢) All]]y converges with much greater radius of
convergence than predicted by theory.*

Our ODE system originates in monomolecular reactions and such systems
are known to be solvable explicitly. Herewith a proof, valid for more general
systems. Recall that a Lie algebra g is solvable if there exists M > 0 s.i.
g[M] — {O}, where g[o] = g and g[k‘|'1] — [g[k]’g[k]]

The solution of our linear ODE lives in the free Lie algebra F generated by
AlOl ALl And here cometh magic:

(Al0] alll] = 2 4l1]
Therefore dim glt) = 1, hence it is a commutative algebra and g!2! = {0}.
The algebra is solvable!

*K. Kormann & S. MacNamara, “Error control for exponential integration of the Master
Equation”, Technical Report (2015).
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With greater generality, consider vy’ = [aq(t)Bg + a1 (t)B1]vy such that
[Bg, B1] = agBo + a1 B1: we have a 2-dimensional free Lie algebra F.
We define the natural embedding n : F — R? s.t.

n(BoBo + 81B1) = [ go ] :
1
Therefore n([voBo + v1B1, BoBo + 81B1]) = C~3, where

07:

—7Y1a0 Y0aQ .
yiai1  —70a1

It can be proved easily that
Cy = (-p)"Cy  where p=—(y1a0+ v101).

We will prove that the solution of the ODE is y(t) = e?0(t)Boea1(t) By,
for some functions o, o1 which obey a nonlinear ODE.



Differentiating,
/I __ /B ocoBo~01B1 / OOBOB 0181 _ / B /Ad B
Yy = (UO o€ c +O'1€ 1€ )y — (UO O—I_O-l ooBo 1)y7

where AdpQ = ef’Qe=". Since AdpQ = S°_,(1/m!)ad’BQ, using
the natural embedding

0

1

@)

1 ol -
o] +o1 X O

|
m=0 T

n <06Bo + UllAdaoBoBl) = 00

:06 é _|_afle<700[1,o] g_)]
ol [91] i o} aomo [1 _ e—Oo(aovl-l—awo)} _ [Oéo].
0 anvyi —+ a170 | apvi — alfyOe_UO(UJOVl‘FCLl’YO) aq

The outcome is a set of two coupled nonlinear ODEs,

ago [1 _ e—Go(ao%-l-awo)}

0-6 T o — QQ,
apy1 + @170
apy1 + ayge?0@0r1ta170) B
Ehl = 1.

agvy1 + a170
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Il. Master equations

Master equations in chemistry and physics describe the time evolution of
a system that can be in exactly one of possible states at any time ¢ > O
and where the variable is the probability of being in a given state. Such
equations are of the form

y' = A(t)y, t>0, y(0)=yg>=0ecRVTL 1Ty)=1

where 1" A(¢t) = 0'.* It is easy to prove that the solution y(t) is a prob-
ability distribution for every ¢t > 0: y.(t) > 0and 1 y(¢) = 1.

Master equations are the differential form of the Chapman—Kolmogorov
equation from stochastic analysis: if f1,..., f;, are stochastic processes
with joint probability p;, ;. (f1,..., fn) then

pil,...,in_l(fla 000 g fn—l) — /

@)

Oopil,...,z'n(fla .oy fn) dfn.

“T. Jahnke & W. Huisinga, “Solving the chemical master equation for monomolecular
reaction systems analytically”, J. Math. Biol. 54 (2007), 1-26.
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Many chemists believe that for V> 1 the only sensible method is Monte
Carlo. It is our business to prove them wrong.

Another council of despair is approximating a continuous-time Markov chain,
is by a discrete-time Markov chain.* In the simplest case, let

p(t) = min{ag o(t),...,an n(t)}
and set P(¢t) = I + rlt)A(t). Given hy, = p~1(tn) and t, = t,,_1 + hn,
we set
Yn — P(tn—l)yn—la
a 1st-order method. Note that || P|[; = 1 and 0 < P, , < 1, hence positiv-
ity.

*R.B. Sidje, K. Burrage & S. MacNamara, "Inexact uniformization method for computing
transient distributions of Markov chains”, SIAM J. Sci. Comput. 29 (2007), 2562—2580.
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Of particular interest are matrices A(t) which are graph Laplacians: A, ,, <0
and Ay p > O for k 7= £.

Let M, be the set of such (N 4+ 1) x (N + 1) matrices. |f(t)| < 1 im-
plies that AI01 4 7(¢)Alll € @ so, unknowingly, we have been talking of
graph Laplacians.

Graph Laplacians, their eigenvalues and eigenvectors, have huge impor-
tance in graph and network theory.

II.1 Why graph Laplacians?

A huge number of processes in biochemical systems (enzyme Kkinetics,
allosteric enzymes, ion channels, G-protein coupled receptors, gene regu-
lation — enough?) can be depicted as a network: Next slide: an example
of a labelled graph and the corresponding graph Laplacian
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A network:

lts graph Laplacian:

[ —(ap1tao2tans) a@ip s 0 az o |
A = aQ, 1 —(ag otaiota13) a2 asz 1
Qg2 a1p  —(azpotasitas3) az o

I Q3 @13 ar3  —(azotazitaz2) |
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Graph Laplacians (which are also related to the Kirkchhoff Theorem and
electrical circuits®) have many extra features, e.g. their spectrum lives in
C~. According to Tutte’s Matrix-Tree Theorem, the stationary state of
y' = A(t)y, where A(t) is a graph Laplacian and yq >~ 0, is positive. |

OUR GOAL: Given the linear system

y = A(t)y, t>0, y(0)=yg>=0ecRVNTL
where A is a graph Laplacian (or, with greater generality, 1' A(t) =0")
and 1'yy = 1, find a numerical solution y,, ~ y(t,), 0 =tg < t1 < - -,
such that
@ 1'y,=1,neN;
(b) y,>0,neNN.

*J. Gunawardena, “A linear framework for time-scale separation in nonlinear biochemi-
cal systems”, PLoS ONE 7 (2012), e36321; I. Mirzaev & J. Gunawardena, “Laplacian
dynamics on general graphs”, Bull. Math. Bio. 75 (2013), 2118—49.

TA(t) being singlular, this is a statement about the eigenvector space corresponding to
zero eigenvalues.
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1.2 The devil’s dilemma: (a) or (b)?

Conserving positivity is very difficult with methods of order > 2* while con-
serving linear invariants is trivial. Thus, any reasonable multistep, Runge—
Kutta or Lie-group method conserves (a) and fails on (b). What to do?

We can conserve (b) by a simple change of variables, v, (t) = %),
k = 0,...,N. This results in the nonlinear ODE

N
0, = > Ap e’ %  k=0,...,N
(=0
and positivity is built-in — except that (a) becomes a nasty nonlinear invari-
ant,

N
Z efk(t) = 1,
k=0
which is difficult to enforce and of questionable stability.

*C. Bolley & M. Crouzeix, “Conservation de la positivité lors de la discrétisation des
problémes d’évolution paraboliques”, RAIRO Anal. Numér. 12 (1978), 237-245.
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I1.3 Lie-group methods

Back to square number one: conserve (a) automatically and do ‘something’
about (b). Given that the system is linear, we use a Lie-group method. Note
that m, the set of (VN 4+ 1) x (N 4+ 1) matrices Ast.1'A=0",is a
Lie algebra.* The corresponding Lie group )i, is the set of matrices B
st.1'B=1".

We have three options:

e Magnus,

o Fer,

e Canonical coordinates of the second kind

They all map my; to 9i,,. But... what about positivity?

*The set m of graph Laplacians is a cone in my.
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lIl. Flags of methods

No specific Lie-group is method can be assured of producing y,, >~ 0. How-
ever, all such methods converge, hence for sufficiently large order, once
the error is sufficiently small, if y,,_1 > 0, they are assured to produce
Yy, ~ 0.

Similarly to flag manifolds, we say that a set of numerical methods {Mr,h}r;l
is a flag if
1. Each M, ,, is of order p,, i.e.

My pltn—1,Y(tn—1)] — y(tn) = O(hPE+1),
where t,, = t,,_1 + h;

2. p1 < po> < ---, hence lim;_oc pr = 00;

3. Each method M, 1 ;[t,—1,¥,_1] can be obtained with marginal
cost utilising the computations that have led to M, [, 1, y,,—1].

18



lll.1 Flag Fer?

We have tried to construct flag methods for Fer and for CCSK —the problem
is in recycling past values. Fer is particularly enticing: with exact integration

Bo(t)_A(t) i
Bm(t)—kzl ((k _Il_)ll; ]}n L+ Bm—1(1), m > 1,

Jir " B, _1(e) de

Jir =3 Bo(e) e 1

MT,h[t’n—layn—l]:e - €

The order is p,, = 2" 1 — 2 and we can recycle values,

tn—1+h th_1+h
J—y  Bo®de i

n—1-

Fop= B,_1(€) d¢

ftt:__ll_kh Br—l (f) df

= Fppn=Fr_11€ Mph = FrnYn—1-

The problem is discretising integrals: they must be all computed to order
p,~ and this, plus all the exponentials, becomes prohibitively expensive.
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lll.2 Flag Magnus

Given that Magnus is implemented in a time-symmetric manner, p;. = 2k.
The idea is to discretise integrals from the outset, using a Gauss—Legendre
basis of order 2r*. For example, for »* = 3, we compute

A1, Az = hA(tn—1 + G F D), Az = hA(tn_1 + 3h);
By =As,  By= @(z‘b—f‘l), Bz =12(A3 — 245 + Ay);

Q1 = B; (order 2),

Qo = Q1 + B3+ 5[B1,Ba],  (order 4),

Q3 = Qo — 535[B2, B3l — 535182, [B1, B2ll + 55581, [B1, B3ll,
(order 6);

—_ 02
Mr,h = e Y, 1.
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Let ©1 = Q1, hence M; j, = e®1y, ; and set

©,=BCH(£2,,-01) = BCH<Bl + B3 + 15[B1., Bal, _Bl)

1
=EB3 + 5[B1, Ba] + 15[B1, B3] + 15[B1, [B1, Ba]] = @(h3) :

Unlike €25, ©; is not time symmetric. Hence Mo ;, = e@2./\/l17h.

Likewise, ©3 = BCH({23,BCH(—©7, —©>)) and, after long computa-
tion,
©3 = —4[B1,B3]—57[B1,[B1,B2]l~535(B2,[B1,Boll+¢5(B1,[B1,B3l]
+25[B1,[B1,[B1,Balll+ 255 (B1, (B2, B3ll+ 75551, [B2,[B1, Boll]
+45(B1,1B1,[B1,B3l1+555(B1,[B1,[B1,[B1, B2l +O(R7).
We have M3, = e®3M5 ), and ©3 = O(h4).

21



IV. Computing exponentials

IV.1 Padé approximations

Padé approximations are fully consistent with taking m to 9Ji5;. Note
that, in a flag method, we need to compute everything to the ‘top order’
p,*, otherwise computations cannot be recycled. Hence (and adding A-
stability to the mix: stiffness can be an issue!)

©;=0(h) = e®1 =r3,3(01) + O(h'),
©,=0(r%) = e®2 =17, ,1(©1) +O(h?),
©3=0(r*) = e®3 =1, ,1(©1) + O(h!?).

The downside is that computing r3/3(@1)v is expensive and either we
need to cube ©; — danger of large numbers and poor conditioning — or
factorize it at the price of complex arithmetic.

22



IV.2 Generalised polar decomposition

Recall the basis facts:* g is a Lie algebra, G the corresponding Lie group,
and o : g — g an involutory inner automorphism: o(X) = = X>~1, where
> €G, X2 =1 Let

t={Xeg:o(X) =X}, p={Xecg:oX)=-X}
be the sets of fixed points and anti-fix points of o. Then

1. tis a Lie algebra, while p is a Lie triple space;

2. t © p. Specifically, let X € g. Then K = 2[X + o(X)] € ¢,

g=
P=3[X-o(X)]€pand X = K + P;

3. It is possible to construct K : R, — ¢, P : R, — p, both in the free
Lie algebra generated by K and P, such that e* = el’elf.

*H.Z. Munthe-Kaas, G.R.W. Quispel & A. Zanna, “Generalized polar decompositions on
Lie groups with involutive automorphisms’, Found. Comput. Math. 3 ( 2001), 297-324.
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Choose > = I — 2e;e{ , then P is nonzero in just its first row and column,
hence rank P < 2 and e is trivial to compute. Then continue likewise
‘slicing’ the Lie algebra K with > =T — Qezeg and so on — finally, we
have eX = ef1e2...ePr and each exponential can be evaluated trivially.

An improvement:* First bring X to an upper Hessenberg form using House-
holder reflections, X = HY H, hence e* = He¥ H. Apply GPD to Y but
slicing from the bottom. Each iteration ‘contaminates’ the upper Hessen-
berg form with few entries at the bottom right of the matrix, which can be
dealt with using Givens rotations.

However... X € my 4 Y € my and Householder reflections destroy the
structure of m,;. What to do?

*A. Iserles & A. Zanna, “Efficient computation of the matrix exponential by generalized
polar decompositions’, SIAM J. Numer. Anal. 42 (2005), 2218—-2256.
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IV.3 Upper Hessenberg in m

Firstly, we need to choose > € 91, >2 = I —and here is one:

1 0 --- 0 O
o 1 --. i
> =|: -. =-. 0 O
o ... 0 1 2
O --- 0 0 -1
In place of Householder, we adapt a Gaussian elimination-like algorithm
from to my;. Let 6 be the leading column of X € mj;: of

course, 1 ' & = 0. We seek a nonsingular matrix S s.t. the leading column
of X1 = SlXS]L_1 IS consistent with upper Hessenberg and X € my.

Unless 0 has at least two nonzero elements, we chose S as a permutation
matrix. Otherwise use permutation to bring the largest two terms to 6y and
61 and note that they are both nonzero.
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Let

0 0
1 | %o 1| o1
a— —— (92 . b= — 92
01| . 0o
0N | ON
and set
Sl:[ela a, €, -, eN]a Sflz[ela ba €2, -, BN].
In order to continue and generate S», S3, ..., gradually, ‘building’ an up-

per Hessenberg matrix, we need some subtle combinatorial considerations
which we omit.
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IV.4 Upper Hessenberg commutators

Once X is upper Hessenberg, the cost of linear algebra collapses:

0O --- 0 0 x
e T o000 x
_O O X X_ _OO X ><_
[ 0 0 0 0 x|
0 0 0 0 x
= KEPI=14 .00 0 x
O .-+ 0 X %X X
O --- 0 X X X

and so on. Few rogue elements under the first subdiagonal can be ‘cleaned
by further low-dimensional transformations. The outcome is an algorithm
that computes e®w in O(N 3) flops to very high accuracy.
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V. Further thoughts

1. In GNI we are typically interested in conserving invariants, i.e. equal-
ities. What about conserving inequalities? Whether you call it GNI or
not, it is important. And difficult.

2. Master Equations are fascinating and they have received very little ex-
pert numerical attention. Ditto for the Kossakowski—Linblad Equation,
its quantum-mechanics counterpart, and, for the more ambitious, the
Kardar—Parisi—-Zhang System, its scaling limit.

3. Letting N — oo, chemists obtain the differential Volterra equation
t
y'() = [ At—©y(&)de.
Numerical theory?

28



29



