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I. Crash course on SPDEs

Thanks to www.images.google.com



Motivation

We can see a stochastic wave equation ((x, t) ∈ [0, 1]× [0, T])

utt(x, t)− uxx(x, t) = RANDOM PERTURBATION

as an infinite system of SDE (pseudo-spectral method)

dẊj(t) + ω2
j Xj(t) dt = dβj(t), j ∈ Z,

where βj(t) are standard Brownian motions for t ∈ [0, T]:
• βj(0) = 0 a.s.

• For 0 ≤ s < t ≤ T we have
βj(t)− βj(s) ∼ N(0, t − s) =

√
t − sN(0, 1).

• For 0 ≤ s ≤ t ≤ v ≤ w ≤ T the increments βj(t)− βj(s) and
βj(w)− βj(v) are independent.



SPDEs: Notations and definitions

Mainly TWO approaches to define SPDEs:
Functional setting (SDE in Hilbert space) and random-field approach.
Let D ⊂ Rd, d = 1, 2, 3, be a nice domain. Let us first consider the
linear stochastic wave equation with additive noise in the Hilbert space
U := L2(D):

du̇ −∆u dt = dW in D × (0,T),
u = 0 in ∂D × (0,T),
u(·, 0) = u0, u̇(·, 0) = v0 in D.

Here u = u(x, t) is a U-valued stochastic process, that is

u : [0, T]× Ω → U = L2(D), u(t) := u(t, ω) : D → R,

where (Ω,F ,P) is our probability space.
We will now define a Fourier series for the infinite dimensional Wiener
process W(t).



Definition of the noise

Let Q ∈ L(U) be a bounded, linear, symmetric, non-negative operator

⇒ The operator Q has eigenpairs {(γj, ej)}∞j=1 with orthonormal basis
{ej}∞j=1 of U.

Theorem. The Wiener process with covariance operator Q is given by

W(t) =
∞∑

j=1

γ
1/2
j ejβj(t),

where βj(t) are i.i.d. standard Brownian motion.

The eig. values γj > 0 of the operator Q determine the spatial
correlation of the noise.



Covariance operator

Recall ”definition” of noise: W(t) =
∞∑

j=1

γ
1/2
j ejβj(t).

Consider two types of covariance operator:
• Cylindrical Wiener process, e.g. Q = I:

W(t) =
∞∑

j=1

ejβj(t).

Noise is white in space and time.
• Operator Q is trace-class if

Tr(Q) =

∞∑
j=1

γj < ∞.

This gives noise with some spatial correlation.



Stochastic integrals

With this definition of the noise, we (Da Prato, Zabczyk, f.ex.) can
define the stochastic Itô integral∫ t

0
Φ(s) dW(s)

together with Itô’s isometry

E
[∥∥∥ ∫ t

0
Φ(s) dW(s)

∥∥∥2

U

]
=

∫ t

0
∥Φ(s)Q1/2∥2

HS ds,

where we recall that U = L2(D) and the Hilbert-Schmidt norm on

compact operators ∥T∥HS := Tr(TT∗) =
( ∞∑

j=1

∥Tφj∥2
U

)1/2
with {φj}∞j=1

an ON basis in U.



Last slide of the crash course . . .

Since we will deal with mean-square error bounds, the following norm
will be useful

∥v∥L2(Ω,U) := E[∥v∥2
U]

1/2,

where we recall that U = L2(D) and that E is the mathematical
expectation on our probability space (Ω,F ,P).



No . . . this was not the last slide :-)

The second approach is based on another definition of the noise.
Problem (1d for simplicity):

∂2u
∂t2 (t, x) =

∂2u
∂x2 (t, x) + Ẇ(t, x).

Here, W(t, x) is a Brownian sheet (multi-parameter version of
Brownian motion). That is, the noise term Ẇ(t, x) is a mean zero
Gaussian noise with spatial correlation k(·, ·), i.e.

E[Ẇ(t, x)Ẇ(s, y)] = δ(t − s)k(x, y),

where δ is a Dirac delta function at the origin.

Thanks to G. Lord



II. The stochastic wave equation

Thanks to A. Grandchamp



Motivation: motion of DNA molecule in a liquid

Motion of a strand of DNA floating in a liquid (Gonzalez, Maddocks
2001, Dalang 2009):

DNA molecule⇝ string⇝ system of 3 wave equations in R3.
Liquid particles hit DNA⇝ stochastic motion.



The stochastic wave equation

Consider the stochastic wave equation

du̇ −∆u dt = f (u) dt + g(u) dW in D × (0, T),
u = 0 in ∂D × (0, T),
u(·, 0) = u0, u̇(·, 0) = v0 in D,

where u = u(x, t), D ⊂ Rd, d = 1, 2, 3, is a bounded convex domain
with polygonal boundary ∂D. The stochastic process {W(t)}t≥0 is an
L2(D)-valued (possibly cylindrical) Q-Wiener process.

We set Λ = −∆ with D(∆) = H2(D) ∩ H1
0(D).



Abstract formulation of the problem

Recall the problem: du̇ −∆u dt = f (u) dt + g(u) dW and Λ = −∆.
Define the velocity of the solution u2 := u̇1 := u̇ and rewrite the above
problem as

dX(t) = AX(t) dt + F(X(t)) dt + G(X(t)) dW(t), t > 0,
X(0) = X0,

where X :=

[
u1

u2

]
, A :=

[
0 I
−Λ 0

]
, F(X) :=

[
0

f (u1)

]
, G(X) :=

[
0

g(u1)

]
,

and X0 :=

[
u0

v0

]
.

The operator A is the generator of a strongly continuous semigroup
E(t) = etA.



Exact solution of the stochastic wave equation

The stochastic wave equation

dX(t) = AX(t) dt + F(X(t)) dt + G(X(t)) dW(t), t > 0,
X(0) = X0,

has a unique mild solution (recall E(t) = etA)

X(t) = E(t)X0 +

∫ t

0
E(t − s)F(X(s)) ds +

∫ t

0
E(t − s)G(X(s)) dW(s).

This is the variation-of-constants formula :-)

Obs. Here, one needs some regularity assumptions on the noise, f and
g.



1d stochastic sine-Gordon

Problem: For (x, t) ∈ [0, 1]× [0, 1], consider the SPDE with
space-time white-noise

du̇ −∆u dt = − sin(u) dt − sin(u) dW,

u(0, t) = u(1, t) = 0,
u(x, 0) = cos(π(x − 1/2)), u̇(x, 0) = 0.
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III. Numerical discretisations
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Results (I) . . . spoiler alert . . .

Problem: du̇ −∆u dt = dW.
Spatial discretisation by standard linear FEM with mesh h.
Time discretisation by stochastic trigonometric method with step
size k.
Theorems (C., Larsson, Sigg 2013)

• Exact linear growth of the energy for the num. solution.
• Mean-square order of convergence at most one (depends on the

regularity of the noise)

∥Un
1 − uh,1(tn)∥L2(Ω,U) ≤ Ckmin{β,1}∥Λ(β−1)/2Q1/2∥HS,

where uh,1 is the FE solution of our problem.
• Mean-square errors for the full discretisation.

FEM done in Kovács, Larsson, Saedpanah 2010



Results (II)

Problem: du̇ −∆u dt = f (u) dt + g(u) dW.
Spatial discretisation by standard linear FEM with mesh h.
Time discretisation by stochastic trigonometric method with step
size k.
Theorems (Anton, C., Larsson, Wang 2016)

• Mean-square errors for the full discretisation

∥Un
1 − u1(tn)∥L2(Ω,U) ≤ C ·

(
h

2β
3 + kmin(β,1)

)
for β ∈ [0, 3],

∥Un
2 − u2(tn)∥L2(Ω,U) ≤ C ·

(
h

2(β−1)
3 + kmin(β−1,1)

)
for β ∈ [1, 4].

• Almost linear growth of the energy for the num. solution of the
nonlinear problem with additive noise.



Results (III) for random-field

Problem ∂2u
∂t2 (t, x) = ∂2u

∂x2 (t, x) + f (u(t, x)) + σ(u(t, x))∂
2W

∂x∂t(t, x).

Spatial discretisation by centered FD with mesh ∆x.

Time discretisation by stochastic trigonometric method with step size
∆t.

Theorem (C., Quer-Sardanyons 2015). Consider, for simplicity, the
initial values u0 = v0 = 0. Assume f and σ satisfy a global Lipschitz
and linear growth condition.
Let p ≥ 1. Then, the following estimate of the error for the full
discretisation holds:

sup
(t,x)∈[0,T]×[0,1]

(
E
[
|uM,N(t, x)− u(t, x)|2p]) 1

2p ≤ C1 (∆x)
1
3−ε + C2 (∆t)

1
2 ,

for all small enough ε > 0. The constants C1 and C2 are positive and
do not depend neither on M nor on N.



Stochastic trigonometric method (Hilb. sp.) (I)

Recall: The FE problem for the linear wave equation with additive
noise reads (Ph orthogonal projection, B = [0, I])

dXh(t) = AhXh(t) dt + PhB dW(t), Xh(0) = Xh,0, t > 0.

Use variation-of-constants formula for the exact solution:

Xh(t) = Eh(t)Xh,0 +

∫ t

0
Eh(t − s)PhB dW(s),

where

Eh(t) = etAh =

[
Ch(t) Λ

−1/2
h Sh(t)

−Λ
1/2
h Sh(t) Ch(t)

]
with Ch(t) = cos(tΛ1/2

h ) and Sh(t) = sin(tΛ1/2
h ).



Stochastic trigonometric method (II)

Discretise the stochastic integral in the var.-of-const. formula

Xh(k) = Eh(k)Xh,0 +

∫ k

0
Eh(k − s)PhB dW(s)

to obtain Un+1 = Eh(k)Un + Eh(k)PhB∆Wn, that is,[
Un+1

1
Un+1

2

]
=

[
Ch(k) Λ

−1/2
h Sh(k)

−Λ
1/2
h Sh(k) Ch(k)

][
Un

1
Un

2

]
+

[
Λ
−1/2
h Sh(k)
Ch(k)

]
Ph∆Wn,

where ∆Wn = W(tn+1)− W(tn) denotes the Wiener increments. Get
an approximation Un

j ≈ uh,j(tn) of the exact solution of our FE problem
at the discrete times tn = nk.

Similar ideas used for the semi-linear case with multiplicative noise.

Chap. XIII of the yellow bible by Hairer, Lubich, Wanner 2006



A trace formula

Theorem (C., Larsson, Sigg 2013) Expected value of the energy of the
FE solution Xh(t) = [uh,1(t), uh,2(t)] grows linearly with time:

E
[

1
2

(
∥Λ1/2

h uh,1(t)∥2
L2(D) + ∥uh,2(t)∥2

L2(D)

)]
= E

[
1
2

(
∥Λ1/2

h uh,0∥2
L2(D) + ∥vh,0∥2

L2(D)

)]
+ 1

2 tTr(PhQPh).

We have the same result for the num. sol. given by the stochastic
trigonometric method:

E
[

1
2

(
∥Λ1/2

h Un
1∥2

L2(D) + ∥Un
2∥2

L2(D)

)]
= E

[
1
2

(
∥Λ1/2

h uh,0∥2
L2(D) + ∥vh,0∥2

L2(D)

)]
+ 1

2 tnTr(PhQPh).

Obs. These are long-time results for the numerical solutions.



A trace formula: Numerical experiments (I)

We consider the linear stochastic wave equation

du̇ −∆u dt = dW, (x, t) ∈ (0, 1)× (0, 1),
u(0, t) = u(1, t) = 0, t ∈ (0, 1),
u(x, 0) = cos(π(x − 1/2)), u̇(x, 0) = 0, x ∈ (0, 1),

with a Q-Wiener process W(t) with covariance operator Q = Λ−1/2.
Where we recall Λ = −∆.



A trace formula: Numerical experiments (II)
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A trace formula: Numerical experiments (III)
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Mean-square errors: Numerical experiments (I)

We consider the 1d sine-Gordon equation driven by a multiplicative
space-time white noise ((x, t) ∈ (0, 1)× (0, 0.5))

du̇(x, t)−∆u(x, t) dt = − sin(u(x, t)) dt + u(x, t) dW(x, t),
u(0, t) = u(1, t) = 0, t ∈ (0, 0.5),
u(x, 0) = cos(π(x − 1/2)), u̇(x, 0) = 0, x ∈ (0, 1),

with a space-time white noise with Q = I (β < 1/2).



Mean-square errors: Numerical experiments (II)
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IV. Ongoing and future works

@ Universal Pictures



Ongoing and future works (I)

With R. Anton (Umeå University).

Exponential methods for the time discretisation of stochastic
Schrödinger equations

idu − (∆u + F(u))dt = G(u)dW in Rd × [0, T]
u(0) = u0,

where u = u(x, t), with t ≥ 0 and x ∈ Rd, is a complex valued random
process.

With R. Anton and L. Quer-Sardanyons (UA Barcelona).

Exponential methods for parabolic problems (random-field approach).



Ongoing and future works (II)

With G. Dujardin (Inria Lille Nord-Europe).

Exponential integrators for nonlinear Schrödinger equations with white
noise dispersion

idu + c∆u ◦ dβ + |u|2σu dt = 0
u(0) = u0,

where u = u(x, t), with t ≥ 0 and x ∈ Rd, is a complex valued random
process; c and σ are positive real numbers; and β = β(t) is a real
valued Brownian motion.

Look for mean-square error estimates and mass-preserving exponential
integrators.



Thanks to www.images.google.com



Main ingredients of the proofs

Recall:

uM,N(t, x) =
∫ t

0

∫ 1

0

{
GM(t − κT

N(s), x, y)f
(
uM,N(κT

N(s), κM(y))
)}

dy ds

+

∫ t

0

∫ 1

0

{
GM(t − κT

N(s), x, y)σ
(
uM,N(κT

N(s), κM(y))
)}

W(ds, dy).

1 Write
uM,N(t, x)− u(t, x) = uM,N(t, x)−uM(t, x) + uM(t, x)− u(t, x) and
use the spatial error estimate from Quer-Sardanyons, Sanz-Solé
2006 to get the order C1 (∆x)

1
3−ε for all small enough ε > 0.

2 Next, consider uM,N(t, x)− uM(t, x) and use a Gronwall argument.
3 Use properties of GM(t, x, y), of uM(t, x), of uM,N(t, x),

assumptions on f and σ, Hölder’s inequality,
Burkholder-Davis-Gundy’s inequality and finally Gronwall’s
inequality to bound the error of the fully-discrete solution.



Main steps for the proofs (I)

First, by definition of uM and uM,N , consider the difference

uM,N(t, x)− uM(t, x) =
∫ t

0

∫ 1

0

{
GM(t − κT

N(s), x, y)f
(
uM,N(κT

N(s), κM(y))
)

− GM(t − s, x, y)f
(
uM(s, κM(y))

)}
dy ds

+

∫ t

0

∫ 1

0

{
GM(t − κT

N(s), x, y)σ
(
uM,N(κT

N(s), κM(y))
)

− GM(t − s, x, y)σ
(
uM(s, κM(y))

)}
W(ds, dy).

Next, add and subtract some terms in order to be able to use the
properties of f and σ.



Main steps for the proofs (II)

The first expression

uM,N(t, x)− uM(t, x) =
∫ t

0

∫ 1

0

{
GM(t − κT

N(s), x, y)f
(
uM,N(κT

N(s), κM(y))
)

− GM(t − s, x, y)f
(
uM(s, κM(y))

)}
dy ds + noisy blabla

can be decomposed as the sum of 3 terms:

D1 :=

∫ t

0

∫ 1

0
GM(t − κT

N(s), x, y)

×
{

f
(
uM,N(κT

N(s), κM(y))
)
− f

(
uM(κT

N(s), κM(y))
)}

dy ds,

D2 :=

∫ t

0

∫ 1

0

{
GM(t − κT

N(s), x, y) − GM(t − s, x, y)
}

× f
(
uM(κT

N(s), κM(y))
)

dy ds,

D3 :=

∫ t

0

∫ 1

0
GM(t − s, x, y)

{
f
(
uM(κT

N(s), κM(y))
)
− f

(
uM(s, κM(y))

)}
dy ds.



Main steps for the proofs (III)
The second expression

∫ t

0

∫ 1

0

{
GM

(t − κ
T
N(s), x, y)σ

(
uM,N

(κ
T
N(s), κM(y))

)
− GM

(t − s, x, y)σ
(

uM
(s, κM(y))

)}
W(ds, dy).

can be decomposed as the sum of 3 terms:

D4 :=

∫ t

0

∫ 1

0
GM(t − κT

N(s), x, y)

×
{
σ
(
uM,N(κT

N(s), κM(y))
)
− σ

(
uM(κT

N(s), κM(y))
)}

W(ds, dy),

D5 :=

∫ t

0

∫ 1

0

{
GM(t − κT

N(s), x, y) − GM(t − s, x, y)
}

× σ
(
uM(κT

N(s), κM(y))
)

W(ds, dy),

D6 :=

∫ t

0

∫ 1

0
GM(t − s, x, y)

×
{
σ
(
uM(κT

N(s), κM(y))
)
− σ

(
uM(s, κM(y))

)}
W(ds, dy).



Main steps for the proofs (IV)

We now have to estimate each of the terms D1, . . . ,D6.
Estimates for D6:

D6 :=

∫ t

0

∫ 1

0
GM(t − s, x, y)

×
{
σ
(
uM(κT

N(s), κM(y))
)
− σ

(
uM(s, κM(y))

)}
W(ds, dy).

By Burkholder-Davis-Gundy’s and Hölder’s inequalities, and
Lipschitz condition on σ, one obtains

E
[∣∣D6

∣∣2p]
≤ C

∫ t

0

∫ 1

0
GM(t − s, x, y)2 dy sup

x∈[0,1]
E[|uM(κT

N(s), x)− uM(s, x)|2p] ds.

The Hölder continuity property of the process uM(t, x) gives

E
[∣∣D6

∣∣2p] ≤ C
∫ t

0
(κT

N(s)− s)p ds ≤ C (∆t)p.



Main steps for the proofs (V)

All these estimates together give

sup
(t,x)∈[0,T]×[0,1]

E
[
|uM,N(t, x)− uM(t, x)|2p] ≤ C1 (∆t)p

+ C2

∫ t

0
sup

(r,x)∈[0,s]×[0,1]
E
[
|uM,N(r, x)− uM(r, x)|2p] ds,

for some positive constants C1 and C2 independent of N and M.
An application of Gronwall’s lemma finally lead to

sup
(t,x)∈[0,T]×[0,1]

(
E
[
|uM,N(t, x)− uM(t, x)|2p]) 1

2p ≤ C (∆t)
1
2 .

This concludes the proof of the theorem.



Thanks for your attention!!


