Shape analysis on Lie groups and Homogeneous Manifolds with applications in computer animation

Elena Celledoni

Department of Mathematical Sciences, NTNU, Trondheim, Norway joint work with Markus Eslitzbichler and Alexander Schmeding

Geometric Numerical Integration

Oberwolfach, March 21st 2016

- Analysis of shapes in vector spaces.
- Character animation and skeletal animation.
- Analysis of shapes on Lie groups.
- Applications in:
 - curve blending,
 - projection from open curves to closed curves, and
 - distances between curves.
- Examples in computer animation.

Analysis of shapes

Shapes are *unparametrized curves* in a vector space or on a manifold.

Example: object recognition, objects can be represented by their contours, i.e. closed planar curves.

Example: object recognition, objects can be represented by their contours, i.e. closed planar curves.

Image recognition: a tennis player a tennis racket and a ball.

Definition of shapes via an equivalence relation: let $I \subset \mathbb{R}$ an interval, consider

 $\mathcal{P} \coloneqq \operatorname{Imm}(\mathrm{I}, \mathcal{M}) = \{ c \in C^{\infty}(\mathrm{I}, \mathcal{M}) \mid \dot{c}(t) \neq 0 \},\$

 \mathcal{P} is called **pre-shape space** (an infinite dimensional manifold). Let $c_0, c_1 \in \mathcal{P}$ then

 $c_0 \sim c_1 \iff \exists \varphi : c_0 = c_1 \circ \varphi$

with $\varphi \in \text{Diff}^+(I)$ a orientation preserving diffeomorphism on I

Definition of shapes via an equivalence relation: let $I \subset \mathbb{R}$ an interval, consider

 $\mathcal{P} \coloneqq \operatorname{Imm}(\mathrm{I}, \mathcal{M}) = \{ c \in C^{\infty}(\mathrm{I}, \mathcal{M}) \mid \dot{c}(t) \neq 0 \},\$

 \mathcal{P} is called **pre-shape space** (an infinite dimensional manifold). Let $c_0, c_1 \in \mathcal{P}$ then

 $c_0 \sim c_1 \iff \exists \varphi : c_0 = c_1 \circ \varphi$

with $\varphi \in \operatorname{Diff}^+(I)$ a orientation preserving diffeomorphism on I

shape:

[*c*₀]

Definition of shapes via an equivalence relation: let $I \subset \mathbb{R}$ an interval, consider

 $\mathcal{P} \coloneqq \operatorname{Imm}(\mathrm{I}, \mathcal{M}) = \{ c \in C^{\infty}(\mathrm{I}, \mathcal{M}) \mid \dot{c}(t) \neq 0 \},\$

 \mathcal{P} is called **pre-shape space** (an infinite dimensional manifold). Let $c_0, c_1 \in \mathcal{P}$ then

 $c_0 \sim c_1 \Longleftrightarrow \exists \varphi : c_0 = c_1 \circ \varphi$

with $\varphi \in \operatorname{Diff}^+(I)$ a orientation preserving diffeomorphism on I

shape:

[*c*₀]

Shape space:

```
\mathcal{S} \coloneqq \mathrm{Imm}(\mathrm{I},\mathcal{M})/\sim
```

Let

 $\mathrm{Diff}^+(\mathrm{I}) = \{\varphi \in C^\infty(\mathrm{I},\mathrm{I}) \, | \, \varphi'(t) > 0\}$

be the set of smooth, orientation preserving, invertible maps. Open curves. I = [0, 1]

Let

 $\mathrm{Diff}^+(\mathrm{I}) = \{\varphi \in C^\infty(\mathrm{I},\mathrm{I}) \, | \, \varphi'(t) > 0\}$

be the set of smooth, orientation preserving, invertible maps. Open curves. I = [0, 1]

Elena Celledoni Geometric animation of character motion

Applications often require a **distance** function to measure similarities between shapes. Let $d_{\mathcal{P}}$ be a distance function on \mathcal{P} (on parametrized curves) then

Distance on *S*:

$$d_{\mathcal{S}}([c_0],[c_1]) \coloneqq \inf_{\varphi \in \text{Diff}^+(I)} d_{\mathcal{P}}(c_0,c_1 \circ \varphi).$$

But we need also to check that d_S is well defined, i.e. is independent on the choice of representatives c_0 for $[c_0]$ and c_1 for $[c_1]$. Applications often require a **distance** function to measure similarities between shapes. Let $d_{\mathcal{P}}$ be a distance function on \mathcal{P} (on parametrized curves) then

Distance on *S*:

$$d_{\mathcal{S}}([c_0],[c_1]) \coloneqq \inf_{\varphi \in \text{Diff}^+(I)} d_{\mathcal{P}}(c_0,c_1 \circ \varphi).$$

But we need also to check that d_S is well defined, i.e. is independent on the choice of representatives c_0 for $[c_0]$ and c_1 for $[c_1]$.

Computational methods for d_S :

- gradient flows
- dynamic programming

 $d_{\mathcal{P}}(c_0, c_1)$ it is usually obtained by defining a Riemannian metric on the infinite dimensional manifold \mathcal{P} of parametrized curves:

 $\mathcal{G}_c: T_c \mathcal{P} \times T_c \mathcal{P} \to \mathbb{R}$

and taking the length of the geodesic α between $c_0 \in \mathcal{P}$ and $c_1 \in \mathcal{P}$ wrt \mathcal{G}_c , i.e.

 $d_{\mathcal{P}}(c_0, c_1) \coloneqq \operatorname{length}(\alpha(c_0, c_1))$

 $\alpha(c_0, c_1)$ is the shortest path between c_0 and c_1 wrt \mathcal{G}_c

We will proceed differently and use the SRV transform

 $\mathcal{R}: \mathcal{P} \to \mathcal{C},$

with C a vector space where we can (and will) use the L_2 metric.

Virtual characters and skeletal animation

- Virtual character: a closed surface in \mathbb{R}^3 (triangle mesh).
- Motions of characters via skeletal animation approach.
- Skeleton consisting of bones connected by joints.

Virtual characters and skeletal animation

- Virtual character: a closed surface in \mathbb{R}^3 (triangle mesh).
- Motions of characters via skeletal animation approach.
- Skeleton consisting of bones connected by joints.

Virtual characters and skeletal animation

- Virtual character: a closed surface in \mathbb{R}^3 (triangle mesh).
- Motions of characters via skeletal animation approach.
- Skeleton consisting of bones connected by joints.

The **coordinates of the vertices** of the triangle mesh are specified in a coordinate system **aligned with the bone**. In the animation the movement of the vertices is determined by the bones.

Character animation and skeletal animation

- Skeleton: rooted tree made of bones and joints.
- Configuration space $\mathcal{J} = SE(3)^n$ or $\mathcal{J} = SO(3)^n$ (for human caracters).
- Character's pose specified by assigning values to the degrees of freedom.
- Animation: α : [a, b] → J, a curve on J, [a, b] interval of time.
- *Motion capturing* (recording curves on \mathcal{J}).
- Motion manipulation consider entire animations as shapes belonging to S.

Generating the data: $\alpha : [a, b] \to \mathcal{J}$, a curve on $\mathcal{J} = SO(3)^n$

motion capturing with and without markers

Shape analysis on Lie groups: spaces and metrics

$\mathcal{P} \coloneqq \operatorname{Imm}(\mathrm{I}, \mathcal{G})$	smooth functions with first derivative $\neq 0$
$\mathcal{S} \coloneqq \operatorname{Imm}(\mathrm{I}, \mathcal{G}) / \operatorname{Diff}^+(\mathrm{I})$	shape space

Shape analysis on Lie groups: spaces and metrics

 $\mathcal{P} \coloneqq \operatorname{Imm}(I, G)$ smooth functions with first derivative # 0 $\mathcal{S} \coloneqq \operatorname{Imm}(I, G)/\operatorname{Diff}^+(I)$ shape space

Plan: we aim to obtain a **distance** function on \mathcal{S} by

$$d_{\mathcal{S}}([c_0], [c_1]) \coloneqq \inf_{\varphi \in \text{Diff}^+(I)} d_{\mathcal{P}}(c_0, c_1 \circ \varphi)$$
(1)

with $d_{\mathcal{P}}$ a distance on \mathcal{P} .

Shape analysis on Lie groups: spaces and metrics

 $\mathcal{P} \coloneqq \operatorname{Imm}(I, G)$ smooth functions with first derivative $\neq 0$ $\mathcal{S} \coloneqq \operatorname{Imm}(I, G) / \operatorname{Diff}^+(I)$ shape space

Plan: we aim to obtain a **distance** function on \mathcal{S} by

$$d_{\mathcal{S}}([c_0], [c_1]) \coloneqq \inf_{\varphi \in \text{Diff}^+(I)} d_{\mathcal{P}}(c_0, c_1 \circ \varphi)$$
(1)

with $d_{\mathcal{P}}$ a distance on \mathcal{P} .

Definition. We say $d_{\mathcal{P}}$ is a reparametrization invariant distance function on \mathcal{P} iff

 $d_{\mathcal{P}}(c_0, c_1) = d_{\mathcal{P}}(c_0 \circ \varphi, c_1 \circ \varphi) \quad \forall \varphi \in \mathrm{Diff}^+(\mathrm{I}).$ (2)

Proposition

If $d_{\mathcal{P}}$ is a reparametrization invariant distance function on \mathcal{P} then $d_{\mathcal{S}}([c_0], [c_1])$ as defined in (1) is independent of the choice of representatives of $[c_0]$ and $[c_1]$.

Tools to work with curves on G

 $C^{\infty}_{*}(I,G)$ is an infinite dimensional Lie group, $C^{\infty}(I,\mathfrak{g})$ infinite dimensional Lie algebra

Tools to work with curves on G

 $C_*^{\infty}(I,G)$ is an infinite dimensional Lie group, $C^{\infty}(I,\mathfrak{g})$ infinite dimensional Lie algebra The **evolution operator** of a regular (e.g. finite dimensional) Lie group *G* with Lie algebra \mathfrak{g} :

$$\begin{split} & \operatorname{Evol}: C^{\infty}(\mathrm{I},\mathfrak{g}) \to C^{\infty}_{*}(I,G) \coloneqq \{c \in C^{\infty}(\mathrm{I},G) : c(0) = e\} \\ & \operatorname{Evol}(q)(t) \coloneqq c(t), \quad \text{where} \quad \frac{\partial c}{\partial t} = \mathrm{R}_{c(t)*}(q(t)), \quad c(0) = e, \end{split}$$

 $\operatorname{Evol}: C^\infty(I, \mathfrak{g}) \to C^\infty_*(I, G)$

is a diffeomorphism.

Tools to work with curves on G

 $C_*^{\infty}(I,G)$ is an infinite dimensional Lie group, $C^{\infty}(I,\mathfrak{g})$ infinite dimensional Lie algebra The **evolution operator** of a regular (e.g. finite dimensional) Lie group *G* with Lie algebra \mathfrak{g} :

$$\begin{split} & \operatorname{Evol}: C^{\infty}(\mathrm{I},\mathfrak{g}) \to C^{\infty}_{*}(I,G) \coloneqq \{c \in C^{\infty}(\mathrm{I},G) : c(0) = e\} \\ & \operatorname{Evol}(q)(t) \coloneqq c(t), \quad \text{where} \quad \frac{\partial c}{\partial t} = \mathrm{R}_{c(t)*}(q(t)), \quad c(0) = e, \end{split}$$

 $\operatorname{Evol}: C^\infty(I, \mathfrak{g}) \to C^\infty_*(I, G)$

is a diffeomorphism.

The inverse of the evolution operator is the so called *right logarithmic derivative*

$$\begin{split} \delta^r &: C^\infty_*(I,G) \to C^\infty(I,\mathfrak{g}), \\ \delta^r g &\coloneqq \mathrm{R}^{-1}_{g^*}(\dot{g}). \end{split}$$

H. Glöckner, arXiv:1502.05795v3, March 2015.

A. Kriegl and P. W. Michor, The convenient setting of global analysis.

SRVT for curves on G and distance on \mathcal{P}

SRVT: square root velocity transform. Let $\langle \cdot, \cdot \rangle$ be a right-invariant metric on *G* and $\|\cdot\|$ the induced norm on tangent spaces,

$$\mathcal{R}: \left\{ c \in \mathrm{Imm}(\mathrm{I},G) \, \big| \, c(0) = e \right\} \rightarrow \left\{ v \in C^{\infty}(\mathrm{I},\mathfrak{g}) \, \big| \, \| v(t) \| \neq 0 \right\}$$

$$q(t) = \mathcal{R}(c)(t) \coloneqq \frac{\delta^r c}{\sqrt{\|\delta^r c\|}} = \frac{\mathrm{R}_{c(t)*}^{-1}(\dot{c}(t))}{\sqrt{\|\dot{c}(t)\|}}$$

with inverse

 $\begin{aligned} \mathcal{R}^{-1} &: \{ v \in C^{\infty}(\mathrm{I}, \mathfrak{g}) \, | \, \| v(t) \| \neq 0 \} \rightarrow \{ c \in \mathrm{Imm}(\mathrm{I}, G) \, | \, c(0) = e \}, \\ \mathcal{R}^{-1}(q)(t) &= \mathrm{Evol}(q \| q \|) = c(t). \end{aligned}$

SRVT for curves on G and distance on \mathcal{P}

SRVT: square root velocity transform. Let $\langle \cdot, \cdot \rangle$ be a right-invariant metric on *G* and $\|\cdot\|$ the induced norm on tangent spaces,

$$\mathcal{R}: \left\{ c \in \mathrm{Imm}(\mathrm{I},G) \, \big| \, c(0) = e \right\} \rightarrow \left\{ v \in C^{\infty}(\mathrm{I},\mathfrak{g}) \, \big| \, \| v(t) \| \neq 0 \right\}$$

$$q(t) = \mathcal{R}(c)(t) \coloneqq \frac{\delta^r c}{\sqrt{\|\delta^r c\|}} = \frac{\mathrm{R}_{c(t)*}^{-1}(\dot{c}(t))}{\sqrt{\|\dot{c}(t)\|}}$$

with inverse

 $\begin{aligned} \mathcal{R}^{-1} &: \{ v \in C^{\infty}(\mathrm{I}, \mathfrak{g}) \, | \, \| v(t) \| \neq 0 \} \rightarrow \{ c \in \mathrm{Imm}(\mathrm{I}, G) \, | \, c(0) = e \}, \\ \mathcal{R}^{-1}(q)(t) &= \mathrm{Evol}(q \| q \|) = c(t). \end{aligned}$

Reparametrization invariant distance on \mathcal{P} :

$$d_{\mathcal{P}}(c_0, c_1) \coloneqq d_{L^2}(\mathcal{R}(c_0), \mathcal{R}(c_1)) = \left(\int_{I} ||q_0(t) - q_1(t)||^2 dt\right)^{\frac{1}{2}}$$

Proposition

 $d_{\mathcal{P}}$ is reparametrization invariant.

Distance on S $d_{\mathcal{S}}([c_0], [c_1]) \coloneqq \inf_{\substack{\varphi \in \text{Diff}^+(I) \\ \text{Elena Celledoni}}} \left(\int_{I} \|q_0(t) - q_1(t)\|^2 dt \right)^{\frac{1}{2}}$ Geometric animation of character motion **Elastic metric** on $\mathcal{P} \coloneqq \text{Imm}(I, G)$. Using the right invariant metric $\langle \cdot, \cdot \rangle$ on G we can define

 $\mathcal{G}: \mathcal{TP} \times \mathcal{TP} \mapsto \mathbf{R}$

where

$$\begin{split} \mathcal{G}_{c}(h,k) &:= \int_{I} \left[a^{2} \langle D_{s}h,v \rangle \langle D_{s}k,v \rangle \right] ds \quad \text{(tangential)} \\ \text{(normal)} &+ \int_{I} \left[b^{2} \left(|D_{s}h - \langle D_{s}h,v \rangle v|^{2} |D_{s}k - \langle D_{s}k,v \rangle v|^{2} \right) \right] ds, \end{split}$$

here the integration is with respect to arc-length, ds = |c'(t)|dt, and

$$v \coloneqq \frac{c'(t)}{|c'(t)|}, \qquad D_s h \coloneqq \frac{\partial h(t(s))}{\partial s} = \frac{1}{|c'(t)|} \frac{\partial h}{\partial t}$$

A family of Sobolev type metrics of order one.

Assume I = [0,1], \mathcal{R} : Imm(I, G) $\rightarrow C^{\infty}(I,\mathfrak{g})$

Theorem

The pullback of the L_2 inner product on $C^{\infty}(I, \mathfrak{g})$ to $\mathcal{P} = \text{Imm}(I, G)$, by the SRV transform \mathcal{R} is the elastic metric

$$G_{c}(h,h) = \int_{I} \left| D_{s}h - \langle D_{s}h,v \rangle v \right|^{2} + \frac{1}{4} \left\langle D_{s}h,v \right\rangle^{2} ds,$$

and

$$D_s h = \frac{\dot{h}}{\|\dot{c}\|}, \qquad v = \frac{\dot{c}}{\|\dot{c}\|}.$$

 D_s denotes differentiation with respect to arc length, v is the unit tangent vector of c and ds denotes integration with respect to arc length.

For computational purposes, we can transform the curves with \mathcal{R} and then use the L_2 metric.

Motion blending on G

Geodesic paths $\alpha : [0,1] \rightarrow \mathcal{P}$ between two parametrized curves on the Lie group G:

 $c = \alpha(0, t), \quad d = \alpha(1, t)$

we get (visually convincing) deformations from c to d

 $\alpha(x,t) = \mathcal{R}^{-1}((1-x)\mathcal{R}(c) + x\mathcal{R}(d))(t).$

Using SRVT \mathcal{R} , we can identify curves $c \in \mathcal{P} = \text{Imm}(I, G)$ with $\mathcal{R}(c) \in C^{\infty}(I, \mathfrak{g})$ Open curves

 $\mathcal{C}^{o} \coloneqq \mathcal{R}\big(\mathrm{Imm}(I,G)\big)$

Using SRVT \mathcal{R} , we can identify curves $c \in \mathcal{P} = \text{Imm}(I, G)$ with $\mathcal{R}(c) \in C^{\infty}(I, \mathfrak{g})$ Open curves

 $\mathcal{C}^{\circ} \coloneqq \mathcal{R}\big(\mathrm{Imm}(I,G)\big) = \{q \in C^{\infty}(I,\mathfrak{g}) \,|\, \|q\| \neq 0\}$

Using SRVT \mathcal{R} , we can identify curves $c \in \mathcal{P} = \text{Imm}(I, G)$ with $\mathcal{R}(c) \in C^{\infty}(I, \mathfrak{g})$ Open curves

$$\mathcal{C}^{\circ} \coloneqq \mathcal{R}\big(\mathrm{Imm}(I,G)\big) = \{q \in C^{\infty}(I,\mathfrak{g}) \,|\, \|q\| \neq 0\}$$

Closed curves

$$\mathcal{C}^{c} \coloneqq \mathcal{R}\big(\{c \in \operatorname{Imm}(I,G) \,|\, c(0) = c(1) = e\}\big)$$

$$\mathcal{C}^{c} = r^{-1}(e), \qquad r := \operatorname{ev}_{1} \circ \operatorname{Evol} \circ \operatorname{sc}, \quad r : \mathcal{C}^{o} \to G$$

ev₁ is the evaluation operator evaluating a curve at t = 1, while sc is the map $sc(q) \coloneqq q ||q||$, and we notice that $r(q) = \mathcal{R}^{-1}(q)(1)$.

Theorem

 \mathcal{C}^{c} is a submanifold of finite codimension of $\mathcal{C}^{\infty}(I,\mathfrak{g})$

Projection from \mathcal{C}^o onto \mathcal{C}^c by means of a constrained minimization problem

$$\min_{\boldsymbol{q}\in\mathcal{C}^c}\frac{1}{2}\|\boldsymbol{q}-\boldsymbol{q}_0\|, \qquad \boldsymbol{q}_0\in\mathcal{C}^c$$

Instead of minimizing the distance from closed curves to q_0 we minimize the closure constraint:

Projection from \mathcal{C}^o onto \mathcal{C}^c by means of a constrained minimization problem

$$\min_{q\in\mathcal{C}^c}\frac{1}{2}\|q-q_0\|, \qquad q_0\in\mathcal{C}^c$$

Instead of minimizing the distance from closed curves to q_0 we minimize the closure constraint:

Measuring closedness.

Consider $\phi: \mathcal{C}^o \to \mathbb{R}$

$$\phi(q) \coloneqq \frac{1}{2} \|\log(r(q))\|^2, \quad r \coloneqq \operatorname{ev}_1 \circ \operatorname{Evol} \circ \operatorname{sc}$$

and

$$\phi(q) = 0 \Longleftrightarrow q \in \mathcal{C}^{c}$$

Projection on the space of closed curves

$$T_q\phi(f) = \langle \operatorname{grad}(\phi)(q), f \rangle_{L_2} = \int_I \langle \operatorname{grad}(\phi)(q), f \rangle \, dx,$$

Theorem

The gradient vector field wrt the L_2 inner product is

$$\operatorname{grad}(\Phi)(q) = \|q\| \alpha(q) + \langle \alpha(q), \frac{q}{\|q\|} \rangle q, \tag{3}$$

q(t).

where

$$\begin{split} &\alpha(q) \coloneqq \operatorname{Ad}_{c(q)^{-1}}^{\mathsf{T}} \operatorname{Ad}_{r(q)}^{\mathsf{T}} \left(\log(r(q)) \right) \quad \in C^{\infty}(I, \mathfrak{g}) \\ &c(q) \coloneqq \mathcal{R}^{-1}(q) \in C^{\infty}(I, G) \\ &r(q) \coloneqq \mathcal{R}^{-1}(q)(1) \in G. \end{split}$$

Projection form C° to C^{c} :

Gradient flow

$$\frac{\partial u}{\partial \tau} = -\operatorname{grad}(\phi)(u), \quad u(t,0) = q(t).$$
Elena Celledoni Geometric animation of character motion

Discrete curves: piecewise continuous in G

 \bar{c} based on discrete points $\{\bar{c}_i \coloneqq c(\theta_i)\}_{i=0}^n$

$$\bar{c}(t) \coloneqq \sum_{k=0}^{n-1} \chi_{\left[\theta_k, \theta_{k+1}\right)}(t) \exp\left(\frac{t-\theta_k}{\theta_{k+1}-\theta_k}\log(\bar{c}_{k+1}\bar{c}_k^{-1})\right) \bar{c}_k, \quad (4)$$

where χ is the characteristic function.

SRV transform: $\bar{q} = \mathcal{R}(\bar{c})$ piecewise constant function in g: $\bar{q} = \{\bar{q}_i\}_{i=0}^{n-1}$

$$\bar{q}_i \coloneqq \frac{\eta_i}{\sqrt{\|\eta_i\|}}, \quad \eta_i \coloneqq \frac{\log(\bar{c}_{i+1}\bar{c}_i^{-1})}{\theta_{i+1} - \theta_i}.$$

The **inverse SRV** transform: $\bar{c} = \mathcal{R}^{-1}(\bar{q})$:

$$\bar{c}_{i+1} = \exp\left(\bar{q}_i \| \bar{q}_i \| \left(\theta_{i+1} - \theta_i\right)\right) \cdot \bar{c}_i$$

Curve reparametrization

Applying a reparametrization $\varphi \in \text{Diff}(I)$ to the discrete curve \overline{c} gives \widetilde{c} with $\{\widetilde{c}_i\}_{i=0}^n$:

$$\tilde{c}_i \coloneqq \bar{c}_j \exp(s \log(\bar{c}_{j+1}\bar{c}_j^{-1})), \qquad s \coloneqq \frac{\varphi(\theta_i) - \theta_j}{\theta_{j+1} - \theta_j}, \qquad i = 0, \dots, n,$$

where *j* is an index such that $\theta_j \leq \varphi(\theta_i) < \theta_{j+1}$. Note that $\tilde{c}_0 = \bar{c}_0$ and $\tilde{c}_n = \bar{c}_n$ **Curve interpolation**

$$[0,1] \times \mathcal{P} \times \mathcal{P} \to \mathcal{P}$$

(s, \bar{c}_0, \bar{c}_1) $\mapsto \mathcal{R}^{-1}((1-s)\mathcal{R}(\bar{c}_0) + s\mathcal{R}(\bar{c}_1)),$ (5)

with interpolation parameter s. **Curve closing** in SO(3)

$$\operatorname{grad}(\phi)(q) = \|q\| c \log(c(1)) c^{\mathsf{T}} + \langle c \log(c(1)) c^{\mathsf{T}}, \frac{q}{\|q\|} \rangle q, \quad c = \mathcal{R}^{-1}(q)$$

$$\bar{u}^{k+1} = \bar{u}^k - \alpha_k \operatorname{grad}(\phi)(\bar{u}^k),$$

where every \bar{u}^k is a discrete curve as defined above, i.e., $\bar{u}^k = \{\bar{u}^k_i\}_{i=0}^n$. Elena Celledoni Geometric animation of character motion

t

Elena Celledoni

Geometric animation of character motion

Figure: Discontinuities in the handspring animation.

References

- E. Celledoni, M. Eslitzbichler ans A. Scmeding, *Shape analysis on Lie groups with applications in computer animation*, arXiv:1506.00783.
- M. Eslitzbichler, *Modelling character motions on infinite-dimensional manifolds*, The Visual Computer, 2014.
- M. Bauer, M. Eslitzbichler, M. Grasmair, Landmark-Guided Elastic Shape Analysis of Human Character Motions, to appear, 2015.
- M. Bauer, M. Bruveris, S. Marsland, and P.W. Michor, Constructing reparametrization invariant metrics on spaces of plane curves, arxiv, 2012.
- Carnegie-Mellon. Carnegie-Mellon Mocap Database, 2003.
- H. Glöckner. Regularity properties of infinite-dimensional Lie groups, and semiregularity. arXiv:1208.0715 [math], August 2012.
- A. Kriegl and P. W. Michor. *Regular infinite dimensional Lie groups*. Journal of Lie Theory, 7:61–99, 1997.
- A. Srivastava, E. Klassen, S.H. Joshi, and I.H. Jermyn. Shape Analysis of Elastic Curves in Euclidean Spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(7): 1415 –1428, July 2011.

Thank you for listening.