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Outline

• Analysis of shapes in vector spaces.

• Character animation and skeletal animation.

• Analysis of shapes on Lie groups.

• Applications in:
• curve blending,
• projection from open curves to closed curves, and
• distances between curves.

• Examples in computer animation.
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Analysis of shapes

Shapes are unparametrized curves in a vector space or on a
manifold.

Example: object recognition, objects can be represented by their
contours, i.e. closed planar curves.

Image recognition: a tennis player a tennis racket and a ball.
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Shapes

Shapes are unparametrized curves in a vector space or on a
manifold.

Definition of shapes via an equivalence relation: let I ⊂ R an
interval, consider

P ∶= Imm(I,M) = {c ∈ C∞(I,M) ∣ ċ(t) ≠ 0},
P is called pre-shape space (an infinite dimensional manifold).
Let c0, c1 ∈ P then

c0 ∼ c1 ⇐⇒ ∃ ϕ ∶ c0 = c1 ○ ϕ
with ϕ ∈ Diff+(I) a orientation preserving diffeomorphism on I

shape:
[c0]

Shape space:
S ∶= Imm(I,M)/ ∼
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Reparametrization invariance of shapes

Let
Diff+(I) = {ϕ ∈ C∞(I, I) ∣ϕ′(t) > 0}

be the set of smooth, orientation preserving, invertible maps.
Open curves. I = [0,1]
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Distance function on S

Applications often require a distance function to measure
similarities between shapes. Let dP be a distance function on P
(on parametrized curves) then

Distance on S:

dS([c0], [c1]) ∶= inf
ϕ∈Diff+(I)

dP(c0, c1 ○ ϕ).

But we need also to check that dS is well defined, i.e. is
independent on the choice of representatives c0 for [c0] and c1 for
[c1].

Computational methods for dS :

• gradient flows

• dynamic programming
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Distance on P

dP(c0, c1) it is usually obtained by defining a Riemannian metric
on the infinite dimensional manifold P of parametrized curves:

Gc ∶ TcP ×TcP → R

and taking the length of the geodesic α between c0 ∈ P and c1 ∈ P
wrt Gc , i.e.

dP(c0, c1) ∶= length(α(c0, c1))

α(c0, c1) is the shortest path between c0 and c1 wrt Gc

We will proceed differently and use the SRV transform

R ∶ P → C,

with C a vector space where we can (and will) use the L2 metric.
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Virtual characters and skeletal animation

• Virtual character: a closed surface in R3 (triangle mesh).

• Motions of characters via skeletal animation approach.

• Skeleton consisting of bones connected by joints.

The coordinates of the vertices of the triangle mesh are specified
in a coordinate system aligned with the bone. In the animation
the movement of the vertices is determined by the bones.
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Character animation and skeletal animation

• Skeleton: rooted tree made
of bones and joints.

• Configuration space
J = SE(3)n or J = SO(3)n

(for human caracters).

• Character’s pose specified
by assigning values to the
degrees of freedom.

• Animation: α ∶ [a,b]→ J , a
curve on J , [a,b] interval
of time.

• Motion capturing (recording
curves on J ).

• Motion manipulation
consider entire animations
as shapes belonging to S.
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Figure: Skeleton: each node corresponds
to a Q(t) ∈ SO(3)
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Motion capturing

Generating the data: α ∶ [a,b]→ J , a curve on J = SO(3)n

motion capturing with and without markers
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Shape analysis on Lie groups: spaces and metrics

P ∶= Imm(I,G) smooth functions with first derivative≠ 0

S ∶= Imm(I,G)/Diff+(I) shape space

Plan: we aim to obtain a distance function on S by

dS([c0], [c1]) ∶= inf
ϕ∈Diff+(I)

dP(c0, c1 ○ ϕ) (1)

with dP a distance on P.

Definition. We say dP is a reparametrization invariant distance
function on P iff

dP(c0, c1) = dP(c0 ○ ϕ, c1 ○ ϕ) ∀ϕ ∈ Diff+(I). (2)

Proposition

If dP is a reparametrization invariant distance function on P then
dS([c0], [c1]) as defined in (1) is independent of the choice of
representatives of [c0] and [c1].
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Tools to work with curves on G

C∞

∗
(I ,G) is an infinite dimensional Lie group, C∞(I ,g) infinite

dimensional Lie algebra

The evolution operator of a regular (e.g. finite dimensional) Lie group
G with Lie algebra g:

Evol ∶ C∞(I,g)→ C∞

∗
(I ,G) ∶= {c ∈ C∞(I,G) ∶ c(0) = e}

Evol(q)(t) ∶= c(t), where
∂c

∂t
= Rc(t)∗(q(t)), c(0) = e,

Evol ∶ C∞(I ,g)→ C∞

∗
(I ,G)

is a diffeomorphism.
The inverse of the evolution operator is the so called right logarithmic
derivative

δr ∶C∞

∗
(I ,G)→ C∞(I ,g),

δrg ∶= R−1
g∗(ġ).

H. Glöckner, arXiv:1502.05795v3, March 2015.

A. Kriegl and P. W. Michor, The convenient setting of global analysis.
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SRVT for curves on G and distance on P

SRVT: square root velocity transform. Let ⟨⋅, ⋅⟩ be a right-invariant
metric on G and ∥ ⋅ ∥ the induced norm on tangent spaces,

R ∶ {c ∈ Imm(I,G) ∣ c(0) = e}→ {v ∈ C∞(I,g) ∣ ∥v(t)∥ ≠ 0}

q(t) =R(c)(t) ∶= δrc√
∥δrc∥

=
R−1

c(t)∗(ċ(t))√
∥ċ(t)∥

with inverse
R−1 ∶ {v ∈ C∞(I,g) ∣ ∥v(t)∥ ≠ 0}→ {c ∈ Imm(I,G) ∣ c(0) = e},

R−1(q)(t) = Evol(q∥q∥) = c(t).

Reparametrization invariant distance on P ∶

dP(c0, c1) ∶= dL2(R(c0),R(c1)) = (∫
I
∥q0(t) − q1(t)∥2dt)

1
2

Proposition

dP is reparametrization invariant.

Distance on S

dS([c0], [c1]) ∶= inf
ϕ∈Diff+

(I)
(∫

I
∥q0(t) − q1(t)∥2dt)

1
2
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c(t)∗(ċ(t))√
∥ċ(t)∥

with inverse
R−1 ∶ {v ∈ C∞(I,g) ∣ ∥v(t)∥ ≠ 0}→ {c ∈ Imm(I,G) ∣ c(0) = e},

R−1(q)(t) = Evol(q∥q∥) = c(t).
Reparametrization invariant distance on P ∶

dP(c0, c1) ∶= dL2(R(c0),R(c1)) = (∫
I
∥q0(t) − q1(t)∥2dt)

1
2

Proposition

dP is reparametrization invariant.

Distance on S

dS([c0], [c1]) ∶= inf
ϕ∈Diff+

(I)
(∫

I
∥q0(t) − q1(t)∥2dt)

1
2

Elena Celledoni Geometric animation of character motion



Connections to the elastic metric

Elastic metric on P ∶= Imm(I,G). Using the right invariant
metric ⟨⋅, ⋅⟩ on G we can define

G ∶ TP ×TP ↦ R

where

Gc(h, k) ∶ = ∫
I
[a2⟨Dsh, v⟩⟨Dsk , v⟩] ds (tangential)

(normal) + ∫
I
[b2 (∣Dsh − ⟨Dsh, v⟩v ∣2 ∣Dsk − ⟨Dsk, v⟩v ∣2)] ds,

here the integration is with respect to arc-length, ds = ∣c ′(t)∣dt,
and

v ∶= c ′(t)
∣c ′(t)∣ , Dsh ∶=

∂h(t(s))
∂s

= 1

∣c ′(t)∣
∂h

∂t
.

A family of Sobolev type metrics of order one.
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Connections to the elastic metric

Assume I = [0,1], R ∶ Imm(I,G)→ C∞(I,g)

Theorem

The pullback of the L2 inner product on C∞(I,g) to P = Imm(I,G), by
the SRV transform R is the elastic metric

Gc(h,h) = ∫
I
∣Dsh − ⟨Dsh, v⟩ v ∣2 +

1

4
⟨Dsh, v⟩2 ds,

and

Dsh =
ḣ

∥ċ∥ , v = ċ

∥ċ∥ .

Ds denotes differentiation with respect to arc length, v is the unit
tangent vector of c and ds denotes integration with respect to arc length.

For computational purposes, we can transform the curves with R and

then use the L2 metric.
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Interpolation of curves (motion blending)

Motion blending on G

Geodesic paths α ∶ [0,1]→ P between two parametrized curves on
the Lie group G :

c = α(0, t), d = α(1, t)

we get (visually convincing) deformations from c to d

α(x , t) =R−1((1 − x)R(c) + xR(d))(t).
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Original curves Reparametrized

No reparam.

Reparametrized

Figure: Interpolation between two curves in SO(3) with and without
reparametrization.
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Obstacle example (motion blending)

Elastic reparam. Feature reparam.

SO(3) no reparam. SO(3) reparam.

t
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Closed curves

Using SRVT R, we can identify curves c ∈ P = Imm(I ,G) with
R(c) ∈ C∞(I,g)
Open curves

Co ∶=R(Imm(I ,G))

= {q ∈ C∞(I ,g) ∣ ∥q∥ ≠ 0}

Closed curves

Cc ∶=R({c ∈ Imm(I ,G) ∣ c(0) = c(1) = e})

Cc = r−1(e), r ∶= ev1 ○Evol ○ sc, r ∶ Co → G

ev1 is the evaluation operator evaluating a curve at t = 1, while sc
is the map sc(q) ∶= q ∥q∥, and we notice that r(q) =R−1(q)(1).

Theorem

Cc is a submanifold of finite codimension of C∞(I ,g)
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Curve closing

Projection from Co onto Cc by means of a constrained
minimization problem

min
q∈Cc

1

2
∥q − q0∥, q0 ∈ Co

Instead of minimizing the distance from closed curves to q0 we
minimize the closure constraint:

Measuring closedness.
Consider φ ∶ Co → R

φ(q) ∶= 1

2
∥ log(r(q))∥2, r ∶= ev1 ○Evol ○ sc

and
φ(q) = 0⇐⇒ q ∈ Cc
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Projection on the space of closed curves

Tqφ(f ) = ⟨grad(φ)(q), f ⟩L2 = ∫
I
⟨grad(φ)(q), f ⟩dx ,

Theorem

The gradient vector field wrt the L2 inner product is

grad(Φ)(q) = ∥q∥ α(q) + ⟨α(q), q

∥q∥⟩ q, (3)

where

α(q) ∶= AdT
c(q)−1 AdT

r(q) (log(r(q))) ∈ C∞(I ,g)
c(q) ∶=R−1(q) ∈ C∞(I ,G)
r(q) ∶=R−1(q)(1) ∈ G .

Projection form Co to Cc :
Gradient flow

∂u

∂τ
= −grad(φ)(u), u(t,0) = q(t).
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Discrete curves: piecewise continuous in G

c̄ based on discrete points {c̄i ∶= c(θi)}ni=0

c̄(t) ∶=
n−1
∑
k=0

χ[θk ,θk+1)(t) exp( t − θk
θk+1 − θk

log(c̄k+1c̄−1k )) c̄k , (4)

where χ is the characteristic function.

SRV transform: q̄ =R(c̄) piecewise constant function in g:
q̄ = {q̄i}n−1i=0

q̄i ∶=
ηi√
∥ηi∥

, ηi ∶=
log(c̄i+1c̄−1i ),
θi+1 − θi

.

The inverse SRV transform: c̄ =R−1(q̄):

c̄i+1 = exp (q̄i∥q̄i∥ (θi+1 − θi)) ⋅ c̄i
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Numerical algorithms

Curve reparametrization
Applying a reparametrization ϕ ∈ Diff(I) to the discrete curve c̄ gives c̃
with {c̃i}ni=0:

c̃i ∶= c̄j exp(s log(c̄j+1c̄−1j )), s ∶= ϕ(θi) − θj
θj+1 − θj

, i = 0, . . . ,n,

where j is an index such that θj ≤ ϕ(θi) < θj+1. Note that c̃0 = c̄0 and
c̃n = c̄n
Curve interpolation

[0,1] ×P ×P → P
(s, c̄0, c̄1)↦R−1((1 − s)R(c̄0) + sR(c̄1)),

(5)

with interpolation parameter s.
Curve closing in SO(3)

grad(φ)(q) = ∥q∥c log(c(1))cT + ⟨c log(c(1))cT , q

∥q∥⟩q, c =R−1(q)

ūk+1 = ūk − αk grad(φ)(ūk),
where every ūk is a discrete curve as defined above, i.e., ūk = {ūki }ni=0.
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Jumping example (closure of curves)
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Handspring example (closure of curves)

Original

Discontinuities

t

Closed

t
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Curve closure: experiments

Original Closed

Figure: Discontinuities in the handspring animation.
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Curve closing

Original

t

Closed

t

Figure: Application of closing algorithm to a cartwheel animation.
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