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I. INTRODUCTION



Some history

In Oberwolfach GNI workshop (2011), J. Laskar proposed to
construct more accurate and efficient integrators for the
integration of the Solar System

The goal: to achieve round off error (in extended arithmetic)
with the minimum computational cost

Very accurate methods, to be used for long integration time
intervals

The methods should be symplectic and well adapted to the
near-integrable structure of the Hamiltonian problem
Result (until now):

S. Blanes, F.C., A. Farrés, J. Laskar, J. Makazaga and A.
Murua. New families of symplectic splitting methods for
numerical integration in dynamical astronomy. Appl. Numer.
Math. 68 (2013), 58-72
A. Farrés, J. Laskar, S. Blanes, F. Casas, J. Makazaga and A.
Murua. High precision symplectic integrators for the Solar
System. Celest. Mech. Dyn. Astr. 116 (2013), 141-174



Purpose of the talk

1 To review the work done and the constructed methods

2 To propose ‘new’ strategies to get improved? integrators: use
of processing



We first review the simplified model of the Solar System for which
the new methods have been designed:

The non-relativistic gravitational N-body problem



Non-relativistic gravitational N-body problem

Motion of n + 1 particles (the Sun, with mass m0, and n
planets with masses mi , i = 1, . . . , n) only affected by their
mutual gravitational interaction

Hamiltonian system with

H =
1

2

n∑
i=0

‖pi‖2

mi
− G

∑
0≤i<j≤n

mimj

‖qi − qj‖
(1)

qi and pi = mi q̇i : position and momenta of the n + 1 bodies
in a barycentric reference frame.

Planets evolve around the central mass following almost
Keplerian orbits

By an appropriate change of coordinates one can rewrite (1)
as

H = K + VI , where |VI | � |K |.

Jacobi and Heliocentric coordinates



Jacobi coord.: HJ(QJ ,PJ) = KJ(QJ ,PJ) + V
[J]
I (QJ)

Heliocentric coord.:
HH(QH ,PH) = KH(QH ,PH) + V

[H]
I (QH ,PH)

KJ , KH : sum of independent unperturbed Kepler problems

V
[J]
I , V

[H]
I : perturbations depending on the interactions of the

planets

|V [J]
I | � |KJ |, |V

[H]
I | � |KH |, but an important difference:

V
[J]
I (QJ), and V

[H]
I (QH ,PH)

so that V
[H]
I (QH ,PH) can be written as

V
[H]
I (QH ,PH) = V

[H]
I1

(QH) + V
[H]
I2

(PH)



Particular example of a near-integrable Hamiltonian system:

H(q, p; ε) = H [a](q, p) + εH [b](q, p), (2)

where ε� 1 and H [a] is exactly integrable.

In Jacobi coordinates, H [b](q)

In heliocentric coordinates, H [b](q, p) = H
[b]
1 (q) + H

[b]
2 (p)

It makes sense to take into account this special structure when
designing integration methods to approximate its dynamics.

Splitting methods as compositions of the flows corresponding

to H [a] and H [b] or H [a], H
[b]
1 , H

[b]
2

A particular goal: to achieve the same accuracy in both types
of coordinates



II. SPLITTING METHODS FOR NEAR-INTEGRABLE SYSTEMS



General framework

Generic differential equation of the form

x ′ = f [a](x) + εf [b](x), x(0) = x0 ∈ RD , (3)

where |ε| � 1 and each part

x ′ = f [a](x), x ′ = εf [b](x) (4)

is exactly solvable (or can be numerically solved up to round
off accuracy) with solutions

x(τ) = ϕ[a]
τ (x0), x(τ) = ϕ[b]

τ (x0)

respectively, at t = τ , the time step.

If ϕτ (x0) is the exact solution then ψτ = ϕ
[b]
τ ◦ ϕ[a]

τ provides a
first-order approximation,

ψτ (x0) = ϕτ (x0) +O(τ2)



General framework

Higher order approximations can be obtained by

ψτ = ϕ
[a]
as+1τ ◦ ϕ

[b]
bsτ
◦ ϕ[a]

asτ ◦ · · · ◦ ϕ
[b]
b1τ
◦ ϕ[a]

a1τ (5)

for appropriately chosen coefficients ai , bi .

The splitting method ψτ is of order r if for all x ∈ RD ,

ψτ (x) = ϕτ (x) +O(τ r+1) as τ → 0. (6)

Consistency condition:

s+1∑
i=1

ai = 1,
s∑

i=1

bi = 1. (7)

Symmetric / left-right palindromic compositions: as+2−i = ai ,
bs+1−i = bi . Then, if (7) holds, order 2



Lie operators

In term of the Lie operators A and B associated with f [a] and
f [b],

Ag(x) =
d

dτ

∣∣∣∣
τ=0

g(ϕ[a]
τ (x)), B g(x) =

d

dτ

∣∣∣∣
τ=0

g(ϕ[b]
τ (x)),

one has
g(ϕτ (x)) = eτ(A+εB)g(x),

Then, for all functions g ,

g(ϕ[a]
τ (x)) = eτ A g(x), g(ϕ[b]

τ (x)) = eτ εB g(x). (8)



Analogously, for the integrator

ψτ = ϕ
[a]
as+1τ ◦ ϕ

[b]
bsτ
◦ ϕ[a]

asτ ◦ · · · ◦ ϕ
[b]
b1τ
◦ ϕ[a]

a1τ

one has
g(ψτ (x)) = Ψ(τ) g(x),

where Ψ(τ) is

Ψ(τ) = ea1τA eb1τεB · · · easτA ebsτεB eas+1τA. (9)



Generalized order

Two parameters: τ and ε

We are interested in how the local error ψτ (x)− ϕτ (x)
decreases as ε→ 0

Any consistent symmetric method the local error satisfies
ψτ (x) = ϕτ (x) +O(ε τ3) or Ψ(τ)− eτ(A+εB) = O(ε τ3)

If ψτ (x) = ϕτ (x) +O(ε τ5 + ε2 τ3) then the method is of
(generalized) order (4, 2) (R.I. McLachlan)

In general, a splitting method is of generalized order
(r1, r2, . . . , rm) if

ψτ (x) = ϕτ (x) +O(ετ r1+1 + ε2τ r2+1 + · · ·+ εmτ rm+1).

r1 ≥ r2 ≥ · · · ≥ rm



In particular,

(8, 2): ψτ (x)− ϕτ (x) = O(ετ9 + ε2τ3 + · · · )
(8, 4): ψτ (x)− ϕτ (x) = O(ετ9 + ε2τ5 + ε3τ5 + · · · )
(8, 6, 4): ψτ (x)− ϕτ (x) = O(ετ9 + ε2τ7 + ε3τ5 + · · · )
(10, 6, 4): ψτ (x)− ϕτ (x) = O(ετ11 + ε2τ7 + ε3τ5 + · · · )

Independent generalized order conditions obtained in

S. Blanes, F.C., A. Farrés, J. Laskar, J. Makazaga and A.
Murua. New families of symplectic splitting methods for
numerical integration in dynamical astronomy. Appl. Numer.
Math. 68 (2013), 58-72

by considering a particular subset of multi-indices called Lyndon
multi-indices



Generalized order Lyndon multi-indices

(8, 2) (3), (5), (7)
(8, 4) (3), (5), (7), (1, 2)
(8, 6, 4) (3), (5), (7), (1, 2), (1, 4), (2, 3)
(10, 6, 4) (3), (5), (7), (9), (1, 2), (1, 4), (2, 3)

Multi-index Condition

(j), j ≥ 1
s∑

i=1

bi c
j−1
i =

1

j

(1, 2)
s∑

i=1

1

2
b2
i ci +

∑
1≤i<j≤s

bibjcj =
1

3

(1, 4)
s∑

i=1

1

2
b2
i c

3
i +

∑
1≤i<j≤s

bibjc
3
j =

1

5

(2, 3)
s∑

i=1

1

2
b2
i c

3
i +

∑
1≤i<j≤s

bibjcic
2
j =

1

10

ci =
∑i

j=1 aj , i = 1, 2, . . . , s, cs+1 = 1



New numerical schemes (Jacobi coordinates)

(10, 4): 7 stages

a1 b1 a2 b2 a3 b3 a4 b4 a4 b3 a3 b2 a2 b1 a1

(8, 6, 4): 7 stages

(10, 6, 4): 8 stages

a1 b1 a2 b2 a3 b3 a4 b4 a5 b4 a4 b3 a3 b2 a2 b1 a1.

This requires solving the order conditions, applying
optimization procedures, homotopy continuation methods, etc.



Illustration: Solar System in Jacobi coordinates
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Heliocentric coordinates

Now the system is of the form

x ′ = f [a](x) + εf [b](x) + εf [c](x),

‘Idea’: consider a composition

ψ̃τ = ϕ
[a]
a1τ ◦ ϕ̃

[b]
b1τ
◦ ϕ[a]

a2τ ◦ · · · ◦ ϕ̃
[b]
b1τ
◦ ϕ[a]

a1τ

where ϕ̃
[b]
τ is an approximation of ϕ

[b]
τ obtained by some

numerical integrator applied to ε(f [b](x) + f [c](x)),

In particular,

ϕ̃
[b]
biτ

= ϕ
[b]
biτ/2 ◦ ϕ

[c]
biτ
◦ ϕ[b]

biτ/2

But in this way, the resulting method is only of order 2!.



Series of differential operators associated with ψ̃τ

Ψ̃(τ) = ea1τA Φ̃
[b]
b1τ
· · · ea2τA Φ̃

[b]
b1τ

ea1τA

with
Φ̃

[b]
bjτ

= ebjτB+(bjτε)
3D3+(bjτε)5D5+···

By applying the BCH formula, the new term s∑
j=1

b3
j

 ε3τ3D3

appears in the expression of the (vector field of the) modified
Hamiltonian

We impose, in addition to the previous generalized order
conditions,

s∑
j=1

b3
j = 0

and the resulting method can be made of order O(τ5ε5)



Result:

Symmetric schemes with 1 additional stage

Order (8,4) with 6 stages, minimum number (13 maps, 25
exponentials)

ψτ = ϕ
[a]
a1τ ◦ ϕ̃

[b]
b1τ
◦ ϕ[a]

a2τ ◦ ϕ̃
[b]
b2τ
◦ ϕ[a]

a3τ ◦ ϕ̃
[b]
b3τ
◦ ϕ[a]

a4τ ◦ ϕ̃
[b]
b3τ

◦ϕ[a]
a3τ ◦ ϕ̃

[b]
b2τ
◦ ϕ[a]

a2τ ◦ ϕ̃
[b]
b1τ
◦ ϕ[a]

a1τ .

Order (8,6,4), 8 stages

Order (10,6,4), 9 stages (9 order conditions)

In comparison a method (10,6,4) of the form

ψτ = ϕ
[a]
as+1τ ◦ ϕ

[c]
csτ ◦ ϕ

[b]
bsτ
◦ ϕ[a]

asτ ◦ · · · ◦ ϕ
[c]
c1τ ◦ ϕ

[b]
b1τ
◦ ϕ[a]

a1τ

requires 23 order conditions



Illustration: Solar System in Heliocentric coordinates
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Illustration: Solar System in Jacobi coordinates

-18

-16

-14

-12

-10

-8

-6

-5 -4 -3 -2 -1

Mer - Ven - Ear - Mar (Jacobi Coord)

ABA82
ABA84

ABA104
ABA864

ABA1064

-18

-16

-14

-12

-10

-8

-6

-5 -4 -3 -2 -1

Jup - Sat - Ura - Nep (Jacobi Coord) [ short ]

ABA82
ABA84

ABA104
ABA864

 ABA1064

-18

-16

-14

-12

-10

-8

-6

-5 -4 -3 -2 -1

Mercury to Neptune (Jacobi Coord)

ABA82
ABA84

ABA104
ABA86

ABA1064



New directions

Is it possible to construct even more efficient schemes?

One possibility: the use of processing

Methods with a reduced number of stages

Appropriate for long term integrations

Well suited (we believe) for near-integrable problems

III. PROCESSOR AND STARTER



Processing

Methods of the form

ψ̂τ = π−1
τ ◦ ψτ ◦ πτ

We enhance, correct or process the numerical scheme ψτ (the
kernel) with a (near-identity) map πτ (the processor or
corrector) so that the resulting method ψ̂τ is ‘better’ than ψτ .

After n steps,
ψ̂n
τ = π−1

τ ◦ ψn
τ ◦ πτ

Introduced by J. Butcher in 1969 in the context of
Runge–Kutta methods

Processing + splitting: McLachlan, Wisdom, Sanz-Serna,
Blanes, Ros, Murua,...



Effective order

ψτ is of effective order r if a processor πτ exists for which ψ̂τ
is of order r ,

ψ̂τ = π−1
τ ◦ ψτ ◦ πτ = ϕτ +O(τ r+1)

Many order conditions can be satisfied by πτ , and thus ψτ
must verify a much reduced set of conditions (less stages!!)

Splitting + processing for near-integrable problems

... In particular for the integration of the Solar System (very
long time integrations with a few intermediate outputs)



Analysis

ψ̂τ = π−1
τ ◦ ψτ ◦ πτ

Analysis as in the usual case: with operators

For the kernel ψτ ⇒ Ψ(τ) = exp(K )

For the processor πτ ⇒ Π(τ) = exp(P)

Then

Ψ̂(τ) = eF̂ = Π(τ)Ψ(τ)Π−1(τ) = ePeKe−P

and thus
F̂ = ePKe−P = eadPK



Both the kernel and the processor are built as compositions:

eK = ea1τA eb1τεB · · · easτA ebsτεB eas+1τA

eP = ec1τA ed1τεB · · · ecqτA edqτεB ecq+1τA

Symmetric kernel. Then

s+1∑
j=1

aj =
s∑

j=1

bj = 1,

q+1∑
j=1

cj =

q∑
j=1

dj = 0



Procedure

1 Solve the effective order conditions for the kernel (more stages
than strictly necessary for optimization, etc.): very good
kernels

2 Given a particular kernel, solve the conditions for the processor

Remark: It is important to evaluate πτ as accurately as possible,
whereas π−1

τ can be safely approximate (the error does not
propagate). (just the opposite of G. Vilmart’s problem for SDE)



Several processed splitting methods exist involving less stages
for near-integrable problems

For simple examples they show an excellent behavior

In the integration of the Solar System, however, they present
some drawbacks (instabilities, etc.)

Instabilities can be traced to the fact that

q+1∑
j=1

cj =

q∑
j=1

dj = 0

for the processor, which can produce large coefficients

Is there any procedure to avoid that?



Starter

The use of a starter (J. Butcher, 1969)

Consider 3 steps of a processed method (in terms of series of
differential operators):

ePe3Ke−P = (ePeK ) eK (eKe−P)

≡ eT eKeV

T and V are power series expansions in terms of A, B and
their nested Lie brackets [A,B], [A, [A,B]], [B, [A,B]], etc

Coefficients of T and V can be obtained from those of P and
K

Order conditions to be satisfied by P translate into conditions
for T and V



Since K is symmetric and of effective order r , then it is true
that

V (τ) = −T (−τ) +O(τ r+1),

so that
(eT )∗ ≡ e−T (−τ) = eV (τ) +O(τ r+1),

and
eT eK (eT )∗ = e3F̂ +O(τ r+1)

We consider the composition eT eK (eT )∗ as our approximation

... but in this case to the exact solution after time 3τ



We construct the starter eT as the composition

eT = eα1τA eβ1τεB · · · eαqτA eβqτεB

so that
(eT )∗ = eβqτεB eαqτA · · · eβ1τεB eα1τA

Advantages:

The whole method is symmetric
Now

∑q
j=1 αj =

∑q
j=1 βj = 1 and the coefficients are more

reduced in size

Our aim: to construct methods (8, 4), (8, 6, 4), (10, 6, 4) with
processing involving less stages to be used in the integration
of the Solar System (Jacobi and Heliocentric)



Jacobi

(s, 4): kernel with 2 stages involving only complex solutions
⇒ minimum number of stages: 3

But with 3 stages, already methods (s, 6, 4)

(8, 6, 4).

Kernel with 3 stages: a1b1a2b2a2b1a1. 2 solutions
Starter with (at least) 5 stages
Add more stages in the kernel for optimization (4 or 5)

Same strategy for Heliocentric coordinates: add one
additional stage in the kernel

Work in progress


