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The Mathematical Problem

The numerical integration of the time-dependent linear matrix
differential equation

iiu(t) =H(u(t),  u(0)=ueC? (1)

t€[0,T], d> 1, and H(t) a Hermitian (usually dense) matrix.
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The numerical integration of the time-dependent linear matrix
differential equation

iiu(t) =H(u(t),  u(0)=ueC? (1)
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@ Only vector-matrix products, H(t)v, are allowed.

° Cost(H(t1)V) similar to Cost((aH(n) + 5H(t2))v).

@ H(t) is a complex Hermitian matrix

© H(t) is a real symmetric matrix




The Goal

@ The numerical integration of the time-dependent
Schrédinger Equationt (A = 1)
0

. 1T
/a—tw(x, ) = —ZMV (x, 1)+ V(x, )(x,t)

P(x,0) = o(x), x € RP, t € [0, T]. After spatial
discretisation one gets the case in which H(t) is real.




The Goal

@ The numerical integration of the time-dependent
Schrédinger Equationt (A = 1)

.0 1T
/5t¢(xv t) - _2,va ¢(X, t)+ V(X7 t)w(xv t)

P(x,0) = o(x), x € RP, t € [0, T]. After spatial
discretisation one gets the case in which H(t) is real.
@ A quantum two-level system can be written down in the
form 0 e
w(t t
HO = 6y o )

where w(t) is a real function and C(t) is, in general, a
complex function of t.



Frequently used method

The exponential midpoint method to advance from ¢, to
tn+1 =t + h

; h
U1 = € PHt2)y,

One has to approximate the action of the exponential on a
vector (Krylov, Chebyshey, splitting, Taylor, .. .).
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Frequently used method

The exponential midpoint method to advance from ¢, to
tn+1 =t + h

i h
Upp1 = ef/hH(tn+§) Un

One has to approximate the action of the exponential on a
vector (Krylov, Chebyshey, splitting, Taylor, .. .).

Unfortunately, it is at most second order in h.

More efficient methods to reach high accuracy?
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Methods for the non-autonomous case

The (t,t") method

i) Time as a new independent variable: the (t, ') method

Peskin, Kosloff and Moiseyev (93-94)

00, 1) = HOx E)u(x, £ 1)

where

n _ L AN
H(x,t') = H(x,t) i

and then standard methods for the autonomous case can be
used with very large time steps.

Main trouble: the linear system to be solved is of a higher
dimension, making the algorithms computationally very costly.
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Methods for the non-autonomous case

Unitary splitting methods

ii) Time as one dependent variable.

.d
U= H(t)u

is equivalent to (U = (u, uy) € CI*1)

P R R BT S

m
Upey = [Je7amHmean uy,
j=1
{aj, b} splitting method (¢; = )4 bx). Efficient methods:
4th-order (m = 6); 6th-order (m = 10).
Complex coefficients: a; € C,b; € R
4th-order (m = 4); 6th-order (m = 16).
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Methods for the non-autonomous case

Magnus integrators

iii) Time as a parameter to average on each time step

u(t) = e y(ty), Q(tn, t)) =0

Q(t, th) = > o4 Q«(t, tr). It involve multiple integrals of linear
combinations of nested commutators of A= —iH. For example

K
Q¥ = B +[By,Bs].  with  Bi=hy_ajA(t+Gr)
j=1

Q1 =Q+ O(h*+") so that Q¥lu = vy + (v4 — v5) with
vi =Biu, vo=Bou, Vv3=Bu, Vvs=DByv3, V5=Bsw,
Qly involves at least 13 products.
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Methods for the non-autonomous case

Commutator-free integrators

iii) Time as a parameter to average on each time step.

K
Uni1 — eBm ... B Un, Bj = hz ajkA(tn+Ckh),
k=1
ck € R are suitable nodes and aj appropriate coefficients.
m = 2: order 4.

m = 5: order 6 (with real BUT NEGATIVE coefficients aj).
m = 3: order 5 (with complex coefficients aj).
m = 4: order 6 (with complex coefficients aj).
m = 5: order 6 with one commutator ([Bs 1, Bs 2] = O(h®))

Bs oB4 o[Bs3,1,B3.2] o B2 B

Upi1=¢ Un

(real POSTIVE coefficients aj).
e 4 4444



The Rosen-Zener model

The Hamiltonian in terms of Pauli matrices is given by

H(t) = %wa3 + V(t)o4
and in the interaction picture
H(t) = cos(wt) V(1) oy — sin(wt) V(t) op € C2*2
A Rosen-Zener model with dissipation of dimension n = 2k:

Hi(t) = fi(t) o1 ® Ix + f(t) 02 @ Rk + 6Dy

with D, = i x diag{—1,—4,...,—n?}, R, = tridiag{1,0,1},
Vp cos(wt) Vo sin(wt)
_ JOPSWE) () = 20T
h(®) cosh(t/T)’ 2(1) cosh(t/T)’ 9>0,

T=1, te[-5T,5T], n=10.
e R 4
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Example 1:
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Example 1: with dissipation

Vy=2, 8=107"
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ll:H(t) is a real symmetric matrix




The autonomous case

igtu =Hu = u(T)=e"'THu)

where ue C? and H € R9*9 is a real and symmetric matrix.




The autonomous case

. d ;

igu=Hu = u(T)= e~ THu(0)

where ue C? and H € R9*9 is a real and symmetric matrix.
Formally, the problem to solve is

Eo

E;

U pe . Pu = Hu

IE_

Eg1

which is just a set of d harmonic oscillators




Taylor method of order m (u = q + ip)
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Taylor method of order m (u = q + ip)

tor 1= (e )R )
pr _Tgm T1m Po

Chebyshev method

{qc}:( cy C?){ch}
pc -Ccg o7 Po

Symplectic methods

(- 1) (0 %)= (

M < 0.37
m

T8 _ 090
m

1 agy
—by 1 - akbiy?



Taylor method of order m (u = q + ip)

ar \ _( " T o Ts
(o) B){e
Chebyshev method

gc | _( ¢ C7F Q T3
{eh-(% &) {2 7 <00

Symplectic methods

1 0 1 ay \ 1 aky
—bey 1 o 1 o\ —bky 1-— akbkyz
m 2m—2 2m—1
_ 1 aky (K K:
K(y) = H < _bky 1— akbky2 ) - < Kgm—1 K42m

as | _ ( Ki"2 KT [ o T8 _,
Ps KEm o KZT Po m



Horner’s algorithm for the Taylor method:
Yo = U
do k=1m
_ i I8 [
Yk = Up — /mH}’k—1
enddo

Wr =VYm




Horner’s algorithm for the Taylor method:
Yo= U
do k=1m
Yk = Up — /%H}’kq
enddo
WT =Vm
Clenshaw algorithm for Chebyshev (cx = (—i)*Jk(T B)):
dm+2 =0, dm+1 =0

do k=m,0
dk = CxlUp + 2Hd 11 — diy2
enddo

wWe = P271(Tﬁf:/) Up = do — dg




Horner’s algorithm for the Taylor method:
Yo= U
do k=1m
Yk = Up — /%H}’kq
enddo
WT =Vm
Clenshaw algorithm for Chebyshev (cx = (—i)*Jk(T B)):
dm+2 =0, dm+1 =0

do k=m,0
dk = Cklg + 2Hdk 1 — k2
enddo

we = PS5 ((TBH) up = do — b
Splitting Symplectic methods:
do k=1,m
q:=q+aTBHp
p:=p—bxTSHq

e 00



ME™ T m | Brow | yu/m | ) | w®) | v |

@5 1 10 5 063 | 36x108 | 87x10'" | 9.8x10~8
R 9 094 | 34x105 | 29x107% | 1.1x 1075
08 20 [ 12 079 | 1.6x 10~ [ 1.4x 10" [ 58 x 10~ 14
M) 20 | 20 11 | 41x10~7 | 1.8x 1078 | 4.8x 107
MO T30 [ 225 | 0.84 | 81 x1077 [33x10- 8 [15x 10"
M 30 | 30 1.0 | 41x10710 [ 1.9x10-1 [ 3.1 x 10— 1°
MEP Js0 [ a0 136 | 23x1075 | 52x 107 | 22x 105
M) 40 | 40 11 [ 1.8x10"2 [ 4.9 x 10~ 1% [ 2.4 x 10~ 12
MED a0 [ 48 [ 126 [ 21 x1078 [ 24 %1078 [53x 10710
mID 1 a0 [ 56 148 | 1.48x107° | 4.0x10~% | 1.7 x 1075

M) 50 | 50 1.07 | 45x10"1° | 4.5x10"15 [ 2.0 x 10~/
M0 D {50 [ 55 113 | 45x 10~ 13 [ 42x10-13 | 4.1 x 10~ 1
Mgy 50 | 60 126 | 54x10~"" | 27 x 10" | 3.8 x 10~ "
1
1

M2 |50 | 65 32 | 1.2x1078 | 1.2x 1078 | 83 x 10~ 1

M 50| 65 32 | 59x10~7 [ 95x10-" | 6.1x 107
M0 Teo [ 66 115 | 7.2x 10" | 7.2 x 105 [ 2.6 x 10~17
M7 60 [ 72 13 | 15x10-2 [ 1.1x 1012 [ 83x 10~ 18
M 0| 72 126 | 42x10~"" | 65 x 10~ | 4.6 x 10~
M Teo | 78 136 | 1.2x10~° | 7.8 x10~"" | 1.2 x 1072
MU 60 | 84 141 | 84x1078 | 24x1078 | 7.4x 1078
MUAP 160 [ 8a 146 | 29x1076 | 3.7x10"% | 2.9x 106




Example 1:
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Numerical example 1

(Lubich, Blue book, 2008) To approximate
e Mg

with Uy a unitary random vector and
A NxN
H:E e R N =10000

0<E(<2)\ k=1,2,...,10000
After a shift, H — Al, wecantake: T8 =X =t
We approximate:

eltetHyy,  H=(H—th/t
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The Mathematical Problem

/'gtu(t) ~Ht) u(t),  u(0) = up e C,
It can be written as the 2N-dimensional real system
g =H({tp, p=-H{aq

Classical Hamiltonian equations associated to the classical
Hamiltonian

1 1
H(g.p.t) = zp H(p+ 59" H(t)a.
Sanz-Serna&Portillo (1996): Time as two dependent variables:
o (1 1
H= <2pTH(p1 )P+ Pz) + (ZqTH(qz)q - q1> = A(P)+ B(Q)

with g1, g2, p1,p2 € R



The Proposed Algorithm

o = Re(un), po = Im(un)
Hy = H(tn + C4 h), Hy, = H(tn + Cgh), Hs = H(tn + Cgh)

do i=1m
v=(ai1H + aj2Hz + ajzHs) pi_1
qi = gi—1 + hv
v = (bj,1Hi + bi2H2 + bizHs) g;
pi = pi—1 — hv
enddo

Uny1 = Qm + IPm




The system can be written as

7= ( _Ho(t) A0 >z: (A1) + B(t))z

where z = (g, p)" and

- (34). (3 8)

The Magnus series expansion allows to write the formal
solution in exponential form

z(t+ h) = eMz(t),  Q(t h) = iﬂk(t, h)
k=1



Proposed methods

zZ(t+ h)~ eAntieBmeAn . eBiAi z(t)

| EA I 0 I 0 I Hp
~ +1 ~ ~ 1
= (o ™) (g 7)) (e 7) (o 77 )0

where

k k
HA=hS" ayH(t+ gh), HP = hY " bijH(t + gh),
= /=1

for appropriate coefficients ¢;, a; , b; ;.




SE with Morse Potential and external laser interaction

2
igtw(x, ) — <—21M68X2 +V(x) + f(t)x) w(x, 1)

with
V(x)=D(1—e )%, f(t)x = Acos(wt)x

w=1745 D = 0.2251 ,a = 1.1741 a.u. (HF molecule in a.u.),
A =0.011025 and laser frequency w = 0.01787.

x € [—0.8,4.32], splitinto N = 64 parts and periodic bc.

Initial conditions

Pp(x) =cexp (—(y—1/2)ax)exp (—~e ),

v=2D/wy, wyp = a\/2D/n (o is a normalizing constant).



SE with Morse Potential and external laser interaction

2
igt@b(x, ) — <—21M68X2 +V(x) + f(t)x) w(x, 1)

with
V(x)=D(1—e )%, f(t)x = Acos(wt)x

w=1745 D = 0.2251 ,a = 1.1741 a.u. (HF molecule in a.u.),
A =0.011025 and laser frequency w = 0.01787.

x € [—0.8,4.32], splitinto N = 64 parts and periodic bc.

Initial conditions

Pp(x) =cexp (—(y—1/2)ax)exp (—~e ),

v=2D/wy, wyp = a\/2D/n (o is a normalizing constant).
[§ Kormann, Holmgren, and Karlsson, J. Chem. Phys. (2008).



Example 1:
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The Rosen—Zener model

H(t):w03®/k+f(t) 02 ® R

R, = tridiag{1,0,1},

Vo

(1) cosh(t/T) ° v




logo(error)
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Other Applications

Diffusion-advection-reaction equation
We consider the equation

dru(x,t) = A(x, t)u(x, t) = (a(x, t) Ox+B(X, t) Ox+y(x, 1)) u(x, t)

a(x,t) = e X (sint)?,  A(x,t)=e"* (1 +e7),
subject to the initial condition u(x, 0) = sin(2x) and periodic

boundary conditions on the spatial interval Q = [0, 27].
Number of grid points M = 100



Example 2:

Global error

Cost




Other Applications

For solving the nonlinear perturbed problem

au

=AU+t u),

with |¢| < 1 it can be very useful to have a good integrator for
the linear part.




H real and constant

[§ SB, F. Casas, and A. Murua, J. Comput. Phys. (2015).
[§ SB, F. Casas and A. Murua, Found. Comp. Math. (2008).
[§ SB, F. Casas, and A. Murua, SIAM J. Sci. Comput. (2011).

H real and t-dependent

[§ SB, F. Casas, and A. Murua, Work in progress.
[§ SB, F. Casas and A. Murua, Int. J. Comp. Math. (2007).
[§ SB, F. Casas, and A. Murua, RACSAM (2012).

H: t-dependent, complex and/or dissipative

@ SB, F. Casas, and M. Thalhammer, Work in progress.

Group webpage: http://www.gicas.uji.es
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