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%utthu+c2u:f)\u3, xeM, c—o0
M compact manifold or RY.
Heuristic Discussion
o Formal limit
e Formal limit, how to estimate the error
@ Rogorous results
e Masmoudi and Nakanishi
e Faou and Schratz
@ Hamiltonian approach
e Hamiltonian formulation
e Normal Form: standard approach/Galerkin Averaging
@ Dynamics
o Approximate solutions and short time estimates
Longer time estimates
e On R? by dispersive estimates
e On [0, 7] a preliminary result by extension of BNF for semilinear PDEs
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Formal manipulations

@ The operator and the complex variables v := i1/c?

o 12 1 A?
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Formal manipulations

@ The operator and the complex variables v := i1/c?

o 12 1 A?

1 (V). 1/2 o c 1/2 L u—iv
o= |(F) wilmn) vt e
@ Structure of the equations:
b = ic (V). + N(¥) (1)

with

- () ()

nonlinear term.
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A model problem

@ A model problem

_ ) ; e \ 2
b= i (V) + (), W) :=A() o
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A model problem

@ A model problem
_ ; ; NS %
b= ic (V) M) () = A () P

@ Approximate: )
- i¢a = Czwa - EAwa + )‘|wa|3 (2)

o Gauge transform: ,(t) := eiczt(,zb(t) then

—id= 80+ Aol (3)
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A model problem

@ A model problem
_ ; ; NS %
b= ic (V) M) () = A () P

@ Approximate:
iy 1
— i, = Czwa - EAwa + )\|wa|3 (2)

o Gauge transform: ,(t) := eiczt(,zb(t) then
L s
—ib= 280+ Mgl ()
@ A solution of (2) solves actually
. _ . 1
Va = ic (V). s + N(¢a) + ?R(t) )

B = (i, — ig s +ic (V)) + (Mol — (o))

D. Bambusi (UNIMI) 7) i /< 2016, March 22



Estimates of the error

@ Equation for the error

§i=1v =1y, 6=ic(V).6+ N, +06) — N(ya) - —5
@ Duhamel

() = /O L (gl 1, (5))] 6(5)ds +O(6?) + O()

e solution [|§(t)|| < c 2 for |t| <1
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Estimates of the error

Equation for the error

Si=v—1p,, 6=1ic(V).0+N,+6)— N(.) — —5

Duhamel

() = /O L (gl 1, (5))] 6(5)ds +O(6?) + O()

solution [|6(t)|| < c2 for |t| <1

How to improve times?

One should improve the trivial estimate of the solution of

§=ic(V).6+[dN(wa(s)] 6 = [3(0)]| < e
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Dispersive estimates

e InR3

V=il = Y(t) = 153% /R3 e Yo(y)dy
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Dispersive estimates

e InR3

: c

x—y[2 C
0= it — 00 = 75 [ F oy — o0 < 5 ol
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Dispersive estimates

e InR3

. 2 c
0= it — 00 = 75 [ F oy — o0 < 5 ol

@ Strichartz estimates: _
”e’tAwOHL%Lg 5 HdJOHLz

@ Stable under perturbation: They hold for

—ith = —AY + eA(t)

for A in suitable classes.
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Rigorous results (nonlinear case), M = R¢

o With loss of regularity, Tsutsumi 1984, Najman 1990,

@ In energy space: series of papers by Masmoudi, Machimara, Nakanishi,
Ozawa, around 2000.
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Rigorous results (nonlinear case), M = R¢

o With loss of regularity, Tsutsumi 1984, Najman 1990,
@ In energy space: series of papers by Masmoudi, Machimara, Nakanishi,
Ozawa, around 2000.

Theorem (Masmoudi Nakanishi 2002)

Let 92 — o in HY/2. Consider the solution ¢(t) of NLS with $(0) = ¢°, and let
T* be its maximal existence time. Let v.(t) be the solution of NLKG and let T*
be its maximal existence time, then

liminf T} > T*

c—00

and

Ve — e<tp — 0 ,in C([0, T*), HY/?)

Use of adapted Strichartz estimates in ¢ dependent Besov spaces.
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Rigorous results (nonlinear case), M = R¢

o With loss of regularity, Tsutsumi 1984, Najman 1990,
@ In energy space: series of papers by Masmoudi, Machimara, Nakanishi,
Ozawa, around 2000.

Theorem (Masmoudi Nakanishi 2002)

Let 92 — o in HY/2. Consider the solution ¢(t) of NLS with $(0) = ¢°, and let
T* be its maximal existence time. Let v.(t) be the solution of NLKG and let T*
be its maximal existence time, then

liminf T} > T*

c—00

and

Ve — e<tp — 0 ,in C([0, T*), HY/?)

Use of adapted Strichartz estimates in ¢ dependent Besov spaces.
@ Realistic models Mauser and collaborators around 2002
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Compact case M = T¢

Theorem (Faou Schratz 2014)
Fix T < T%*, then for any s there exists si, s.t. if

-1
Hs+s1 j c Y

lve = ¢’

then

1Ye = dll (o, 11y = ct
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then
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theory).
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Compact case M = T¢

Theorem (Faou Schratz 2014)
Fix T < T%*, then for any s there exists si, s.t. if

lve = ¢°]

-1
Hs+s1 j c I

then
1Ye = dll (o, 11y = ct

Proof through modulated Fourier expansion (variant of averaging/normal form
theory).
Actually the result is stronger: Error=0(c™"), but not longer times!
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@ Hamiltonian approach
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The Hamiltonian

@ The Hamiltonian
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The Hamiltonian

@ The Hamiltonian

H:/Mc‘<v>j/2¢]2+A
H_/Mc2|1/1|2dx+/M< |Vl + 2 (ww))

+ singular h.o.t.

@ Expansion

@ Rescale time: 7 := 2t

_ 2y o L "
H—/M|¢|d +C2/M< Vol + = (w+w)>d + h.o.t.
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The Hamiltonian

@ The Hamiltonian
( c )”%mz
(V). V2

H:/Mc‘<v>j/2¢]2+A
H_/Mc2|1/1|2dx+/M< |Vl + 2 (ww))

+ singular h.o.t.

@ Expansion

@ Rescale time: 7:= 2t
H=[ 1] dx+—/ (Givuf+3 @+ 9)*) de-+ ho

@ Structure: € :=c~

H~h0+Zekhk+Zeka.

k>1 k>1

with hy generating a periodic flow ®*.
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Formal BNF

@ Formal theory: Vr > 0, 37" formal canonical transformation s.t.

HoT) = hy+e(h + (F)) + ) _€Z + 0O
k=2
with
2m
(2} =0, (R)W)=5- [ F(ewe.

™
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Formal BNF

@ Formal theory: Vr > 0, 37" formal canonical transformation s.t.

)
HoTW = hy+e(h + (F))+ Y € Z + O™,
k=2

with

2m
(2} =0, (R)W)=5- [ F(ewe.

i
@ the method is constructive, e.g. (for NLKG): hg + e(hy + (F1)) =NLS,

ket 22) = o [ |3+ 820~ 10U + JAUE( A+ 0. A7) |
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Rigorous theory: Galerkin averaging

o Topology: H5(M), s large. Assume Xj,, € C*°(H*"%, H®),
Xp, € C°(H*T20=1 Hs), (true for NLKG)

o Cutoff operator Iy :=spectral projector of —A, on eigenvalues smaller then
N2

@ Strategy:

o cutoff the Hamiltonian: Hy := H o ly: the error is small as an operator
loosing many derivatives
e Put in normal form Hy, choose N and the loss of smoothness in a suitable way.
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A BNF theorem

Let Bs(R)= Ball of radius R and center 0 in H*(M).

Theorem

Consider the Klein Gordon equation; fix r > 1 and s > 1. If e = ¢=2? <« 1, then
there exists T(") : By, (1) — By s(2) analytic, s.t.

HoT®) = ho+e(h + (F)) + S €'Z, + 2R |
k=2
Furthermore, on Bg4,2(1) one has

Xzl Xzl < €

What about the dynamics?
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Dynamics: general (reduction to Gronwall lemma)

o Simplified system: Hgimp := ho + €(h1 + (F1)) + > 1 €' Z,
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Dynamics: general (reduction to Gronwall lemma)

o Simplified system: Hgimp := ho + €(h1 + (F1)) + > 1 €' Z,
o Let 95(7) be a solution of

s = XHymp (¥s) = NLS+h.o. normalised corrections

then v,(t) := T (¢s(c?t)) solves

= ic (V). 160+ N(a) — 5 T R() = NLKG + O()
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Dynamics: general (reduction to Gronwall lemma)

o Simplified system: Hyimp := ho + €(h1 + (F1)) + >, € Z
o Let ¢s(7) be a solution of

s = XHymp (¥s) = NLS+h.o. normalised corrections
then v,(t) := T (¢s(c?t)) solves
; 1
s = ic (V). + N(©s) = 5 T R(15) = NLKG + O(*)

@ the remainder is evaluated on the approximate solution .
o If ¢ is a solution of NLKG, then the error § := v — 1), fulfills

§ = ic (V)64 [N +6) — Nl + 5 TOR(1)
or (rescaling time to t’ = ct)

() = = /0 eI VhdN(1h,(5))d(s)ds + O(6%) + O im

C
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Gronwall Lemma

Corollary
Fix s, assume [[¢o|l4,2, ¢ < 1/2 and

AT st |[Ys(B)llaegs <1, LIS T (4)

(non rescaled time) then

(), <™, [t <T.
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(non rescaled time) then

(), <™, [t <T.
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Gronwall Lemma

Corollary

Fix s, assume [[¢o|l4,2, ¢ < 1/2 and

AT st |[Ys(B)llaegs <1, LIS T (4)

(non rescaled time) then

(), <™, [t <T.

@ This is essentially Faou Schratz result on general M.

@ Problem: the correction of second order become effective after a time O(c¢),
so that they are here invisible.

@ In the focusing case, the second order correction are defocusing, so they are
expected to change qualitatively the dynamics of the normalized equation.
What about the original system?
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@ Longer time estimates: M = R9
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e Case M = R3: use Strichartz estimates to estimate sol of
1/t
5(0) = ¢ [ T an(w())5(s)ds
0

Strichartz estimates typically persist under perturbations! (In suitable
classes.)
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Strichartz estimates

o Standard estimates: let (p, g) be a Schrodinger admissible pair, then

< H(vﬁ*%%w

~Y
LPLe

||eiAt¢||Lng S ”dJHLﬁ

(V) =v1-A

ei(V)tw‘

)
2
Lx

o Difficulty: in NLKG there is a change of smoothness, not in the limit
equation NLS. No trivial uniform estimate is possible!
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Strichartz estimates

o Standard estimates: let (p, g) be a Schrodinger admissible pair, then

ei(V)tw

S [(miity

, (V)=v1-A

gL 2

||eiAt¢||Lng S ”dJHLi

o Difficulty: in NLKG there is a change of smoothness, not in the limit
equation NLS. No trivial uniform estimate is possible!

@ Solution: scaling from the standard estimate by D'Ancona-Fanelli.

For any Schrodinger admissible pair (p, g) and any k > 0, one has

el (Vkty)

(V)3 ity|

LPws HE (5)
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Main dispersive tool

Lemma

Take an initial datum such that the solution s of the normalized equation exists
for all times and has the structure

N
1/}S(Xa t) = wrad(x7 t) + ZW!(X - V/t) (6)

=1

with some 1, € S, v; € R? and ¢,.g € LPWK9 with (p, q) any Schrédinger
admissible pair, then the flow map of

i (9). + ZaN(b(1)

fulfills the estimate (5).
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Main dispersive tool

Lemma

Take an initial datum such that the solution s of the normalized equation exists
for all times and has the structure

N
1/}S(Xa t) = wrad(x7 t) + ZW!(X - V/t) (6)

=1

with some 1, € S, v; € R? and ¢,.g € LPWK9 with (p, q) any Schrédinger
admissible pair, then the flow map of

i (9). + ZaN(b(1)

fulfills the estimate (5).

Use this lemma to estimate
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A theorem

Theorem

Fix k > 0 and a large r , then there exists a large k., with the following property:
take an initial datum such that the solution s of the normalized equation exists
for all times and has the structure (6) and in particular 1,4 € LPWk=9; denote
Pa(t) = T (e tag(t)). Let 1h(t) be the sol of NLKG with the corresponding
initial datum, then one has

1
c

1a(t) = (el S S, ex>1
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A theorem

Theorem

Fix k > 0 and a large r , then there exists a large k., with the following property:
take an initial datum such that the solution s of the normalized equation exists
for all times and has the structure (6) and in particular 1,4 € LPWk=9; denote
Pa(t) = T (e tag(t)). Let 1h(t) be the sol of NLKG with the corresponding
initial datum, then one has

1

E |t|§Cr, c>1

[%a(t) = (el S

o Difficulty: do there exist solutions with the above property? Soliton
resolution conjecture! Something is known, but not too much.

@ The Theorem says that in this case the soliton dynamics and the dynamics of
the radiation is well described by the approximate equation.
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@ Longer time estimates: M = [0, 7]
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A modified problem

@ A modified problem
Ut — U + V k0 + u= Au .

c2

Vv,
o V(x)=> 0o k—g cos(kx), Vi € [-1/2,1/2] iid . V corresponding probability
space endowed by the product measure.
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Compact theorem

Theorem
There exists A C (V x R) with

[AN(N,N+1] x V)| =1

s.t. the following holds true. Fix o > 0 and r > 1 and take (c, V) € A, then there
exists s, with the property that Vs > s, there exist ¢, K1, Kz, K3, s.t. for ¢ > ¢,

K 2K;
loll < = = () < =+, for [t] < Koc” .
C C

For the same times one has

K3
cha :

> k2 ()P = [ (0)P| <
k

@ Small initial data

@ Longer time description, but the limit equation is not identified.
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THANK YOU
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