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Formal manipulations

The operator and the complex variables v := u̇/c2

〈∇〉c :=
(
c2 −∆

)1/2
= c − 1

2c
∆ +O

(
∆2

c3

)

ψ =
1√
2

[(
〈∇〉c
c

)1/2

u − i

(
c

〈∇〉c

)1/2

v

]
=

u − iv√
2

+ h.o.t.

Structure of the equations:

ψ̇ = ic 〈∇〉cψ + N(ψ) (1)

with

N(ψ) := +λ

(
c

〈∇〉c

)1/2(
ψ + ψ̄√

2

)3

nonlinear term.

D. Bambusi (UNIMI) 〈∇〉c = (c2 − ∆)1/2 2016, March 22 5 / 28



Formal manipulations

The operator and the complex variables v := u̇/c2

〈∇〉c :=
(
c2 −∆

)1/2
= c − 1

2c
∆ +O

(
∆2

c3

)

ψ =
1√
2

[(
〈∇〉c
c

)1/2

u − i

(
c

〈∇〉c

)1/2

v

]
=

u − iv√
2

+ h.o.t.

Structure of the equations:

ψ̇ = ic 〈∇〉cψ + N(ψ) (1)

with

N(ψ) := +λ

(
c

〈∇〉c

)1/2(
ψ + ψ̄√

2

)3

nonlinear term.

D. Bambusi (UNIMI) 〈∇〉c = (c2 − ∆)1/2 2016, March 22 5 / 28



A model problem

A model problem

ψ̇ = ic 〈∇〉cψ + Ñ(ψ) , Ñ(ψ) := λ

(
c

〈∇〉c

)1/2

|ψ|3

Approximate:

− iψ̇a = c2ψa −
1

2
∆ψa + λ|ψa|3 (2)

Gauge transform: ψa(t) := e ic
2tφ(t) then

− i φ̇ = −1

2
∆φ+ λ|φ|3 (3)

A solution of (2) solves actually

ψ̇a = ic 〈∇〉cψa + Ñ(ψa) +
1

c2
R(t) ,

R(t)

c2
= (ic2ψa − i

1

2
∆ψa + ic 〈∇〉cψa) +

(
λ |ψa|3 − Ñ(ψa)

)
.
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Estimates of the error

Equation for the error

δ := ψ − ψa , δ̇ = ic 〈∇〉c δ + Ñ(ψa + δ)− Ñ(ψa)− R(t)

c2

Duhamel

δ(t) =

∫ t

0

e ic(t−s)〈∇〉c [dÑ(ψa(s))] δ(s)ds+O(δ2) +O(
1

c2
)

solution ‖δ(t)‖ ≤ c−2 for |t| . 1

How to improve times?

One should improve the trivial estimate of the solution of

δ̇ = ic 〈∇〉c δ + [dÑ(ψa(s))] δ =⇒ ‖δ(t)‖ ≤ eatδ0
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δ̇ = ic 〈∇〉c δ + [dÑ(ψa(s))] δ =⇒ ‖δ(t)‖ ≤ eatδ0

D. Bambusi (UNIMI) 〈∇〉c = (c2 − ∆)1/2 2016, March 22 7 / 28



Dispersive estimates

In R3

ψ̇ = i∆ψ =⇒ ψ(t) =
c

t3/2

∫
R3

e
|x−y|2

it ψ0(y)dy

=⇒ |ψ(x , t)| ≤ C

t3/2
‖ψ‖L1

Strichartz estimates: ∥∥e it∆ψ0

∥∥
L2
t L

6
x
. ‖ψ0‖L2

x

Stable under perturbation: They hold for

−iψ̇ = −∆ψ + εA(t)ψ

for A in suitable classes.

D. Bambusi (UNIMI) 〈∇〉c = (c2 − ∆)1/2 2016, March 22 8 / 28



Dispersive estimates

In R3

ψ̇ = i∆ψ =⇒ ψ(t) =
c

t3/2

∫
R3

e
|x−y|2

it ψ0(y)dy =⇒ |ψ(x , t)| ≤ C

t3/2
‖ψ‖L1

Strichartz estimates: ∥∥e it∆ψ0

∥∥
L2
t L

6
x
. ‖ψ0‖L2

x

Stable under perturbation: They hold for

−iψ̇ = −∆ψ + εA(t)ψ

for A in suitable classes.

D. Bambusi (UNIMI) 〈∇〉c = (c2 − ∆)1/2 2016, March 22 8 / 28



Dispersive estimates

In R3

ψ̇ = i∆ψ =⇒ ψ(t) =
c

t3/2

∫
R3

e
|x−y|2

it ψ0(y)dy =⇒ |ψ(x , t)| ≤ C

t3/2
‖ψ‖L1

Strichartz estimates: ∥∥e it∆ψ0

∥∥
L2
t L

6
x
. ‖ψ0‖L2

x

Stable under perturbation: They hold for

−iψ̇ = −∆ψ + εA(t)ψ

for A in suitable classes.

D. Bambusi (UNIMI) 〈∇〉c = (c2 − ∆)1/2 2016, March 22 8 / 28



Outline

1 Summary

2 Formal theory and general ideas

3 NLKG

4 Hamiltonian approach

5 Dynamics

6 Longer time estimates: M = Rd

7 Longer time estimates: M = [0, π]

D. Bambusi (UNIMI) 〈∇〉c = (c2 − ∆)1/2 2016, March 22 9 / 28



Rigorous results (nonlinear case), M = Rd

With loss of regularity, Tsutsumi 1984, Najman 1990,

In energy space: series of papers by Masmoudi, Machimara, Nakanishi,
Ozawa, around 2000.

Theorem (Masmoudi Nakanishi 2002)

Let ψ0
c → φ0 in H1/2. Consider the solution φ(t) of NLS with φ(0) = φ0, and let

T ∗ be its maximal existence time. Let ψc(t) be the solution of NLKG and let T ∗c
be its maximal existence time, then

lim inf
c→∞

T ∗c ≥ T ∗

and
ψc − e ic

2tφ→ 0 , in C ([0,T ∗),H1/2)

Use of adapted Strichartz estimates in c dependent Besov spaces.

Realistic models Mauser and collaborators around 2002
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Compact case M = Td

Theorem (Faou Schratz 2014)

Fix T < T ∗, then for any s there exists s1, s.t. if∥∥ψ0
c − φ0

∥∥
Hs+s1

� c−1,

then
‖ψc − φ‖C([0,T ];Hs ) � c−1

Proof through modulated Fourier expansion (variant of averaging/normal form
theory).
Actually the result is stronger: Error=O(c−r ), but not longer times!
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The Hamiltonian

The Hamiltonian

H =

∫
M

c
∣∣∣〈∇〉1/2

c
ψ
∣∣∣2 +

λ

4

[(
c

〈∇〉c

)1/2
ψ + ψ̄√

2

]4

dx

Expansion

H =

∫
M

c2|ψ|2dx +

∫
M

(
1

2
|∇ψ|2 +

λ

2

(
ψ + ψ̄

)4
)
dx

+ singular h.o.t.

Rescale time: τ := c2t

H =

∫
M

|ψ|2dx +
1

c2

∫
M

(
1

2
|∇ψ|2 +

λ

2

(
ψ + ψ̄

)4
)
dx + h.o.t.

Structure: ε := c−2

H ∼ h0 +
∑
k≥1

εkhk +
∑
k≥1

εkFk .

with h0 generating a periodic flow Φt .
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Formal BNF

Formal theory: ∀r ≥ 0, ∃T (r) formal canonical transformation s.t.

H ◦ T (r) = h0 + ε(h1 + 〈F1〉) +
r∑

k=2

εrZr +O(εr+1) ,

with

{h0;Zr} = 0 , 〈F1〉 (ψ) :=
1

2π

∫ 2π

0

F1(Φtψ)dt .

the method is constructive, e.g. (for NLKG): h0 + ε(h1 + 〈F1〉) ≡NLS,

ε2(h2 + Z2) =
1

c4

∫ [
1

8
ψ ·∆2ψ̄ − 17λ2|ψ|6 +

3

2
λ|ψ|2(ψ̄∆ψ + ψ,∆ψ̄)

]
dx
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Rigorous theory: Galerkin averaging

Topology: Hs(M), s large. Assume Xhj ∈ C∞(Hs+2j ,Hs),

XFj ∈ C∞(Hs+2(j−1),Hs), (true for NLKG)

Cutoff operator ΠN :=spectral projector of −∆, on eigenvalues smaller then
N2

Strategy:

cutoff the Hamiltonian: HN := H ◦ ΠN : the error is small as an operator
loosing many derivatives
Put in normal form HN , choose N and the loss of smoothness in a suitable way.
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A BNF theorem

Let Bs(R)= Ball of radius R and center 0 in Hs(M).

Theorem

Consider the Klein Gordon equation; fix r ≥ 1 and s � 1. If ε ≡ c−2 � 1, then
there exists T (r) : B4r2+s(1)→ B4r2+s(2) analytic, s.t.

H ◦ T (r) = h0 + ε(h1 + 〈F1〉) +
r∑

k=2

εrZr + εr+1/2R ,

Furthermore, on Bs+4r2 (1) one has

‖XZr ‖s , ‖XR‖s ≤ C

What about the dynamics?
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Dynamics: general (reduction to Gronwall lemma)

Simplified system: Hsimp := h0 + ε(h1 + 〈F1〉) +
∑r

k=2 ε
rZr

Let ψs(τ) be a solution of

ψ̇s = XHsimp (ψs) = NLS+h.o. normalised corrections

then ψa(t) := T (r)(ψs(c2t)) solves

ψ̇a = ic 〈∇〉cψa + N(ψa)− 1

c2r
T (r)∗R(ψa) = NLKG +O(ε−2r )

the remainder is evaluated on the approximate solution .

If ψ is a solution of NLKG, then the error δ := ψ − ψa fulfills

δ̇ = ic 〈∇〉c δ + [N(ψa + δ)− N(ψa)] +
1

c2r
T (r)∗R(ψa(t))

or (rescaling time to t ′ = ct)

δ(t) =
1

c

∫ t

0

e i(t−s)〈∇〉c dN(ψa(s))δ(s)ds +O(δ2) +O(
1

c2r+1
)
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Gronwall Lemma

Corollary

Fix s, assume ‖ψ0‖4r2+s ≤ 1/2 and

∃T s.t. ‖ψs(t)‖4r2+s ≤ 1 , |t| ≤ T (4)

(non rescaled time) then

‖δ(t)‖s ≤ c−2r , |t| ≤ T .

This is essentially Faou Schratz result on general M.

Problem: the correction of second order become effective after a time O(c),
so that they are here invisible.

In the focusing case, the second order correction are defocusing, so they are
expected to change qualitatively the dynamics of the normalized equation.
What about the original system?
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The idea

Case M = R3: use Strichartz estimates to estimate sol of

δ(t) =
1

c

∫ t

0

e i(t−s)〈∇〉c dN(ψa(s))δ(s)ds :

Strichartz estimates typically persist under perturbations! (In suitable
classes.)
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Strichartz estimates

Standard estimates: let (p, q) be a Schrödinger admissible pair, then∥∥∥e i〈∇〉tψ∥∥∥
Lp
t L

q
x

.
∥∥∥〈∇〉 1

p−
1
q + 1

2ψ
∥∥∥
L2
x

, 〈∇〉 :=
√

1−∆∥∥e i∆tψ
∥∥
Lp
t L

q
x
. ‖ψ‖L2

x

Difficulty: in NLKG there is a change of smoothness, not in the limit
equation NLS. No trivial uniform estimate is possible!

Solution: scaling from the standard estimate by D’Ancona-Fanelli.

Lemma

For any Schrödinger admissible pair (p, q) and any k ≥ 0, one has∥∥∥e i〈∇〉c tψ∥∥∥
Lp
t W

k,q
x

. c
1
q−

1
2

∥∥∥〈∇〉c 1
p−

1
q + 1

2ψ
∥∥∥
Hk

. (5)
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Main dispersive tool

Lemma
Take an initial datum such that the solution ψs of the normalized equation exists
for all times and has the structure

ψs(x , t) = ψrad(x , t) +
N∑
l=1

ηl(x − vl t) (6)

with some ηl ∈ S, vl ∈ R3 and ψrad ∈ LptW
k,q
x with (p, q) any Schrödinger

admissible pair, then the flow map of

i 〈∇〉c +
1

c
dN(ψs(t))

fulfills the estimate (5).

Use this lemma to estimate ∥∥∥∥∥ 〈∇〉1/2
c

c1/2
δ

∥∥∥∥∥
L∞t Hk

x
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A theorem

Theorem
Fix k ≥ 0 and a large r , then there exists a large k∗, with the following property:
take an initial datum such that the solution ψs of the normalized equation exists
for all times and has the structure (6) and in particular ψrad ∈ LptW

k∗,q
x ; denote

ψa(t) := T (r)(e ic
2tψs(t)). Let ψ(t) be the sol of NLKG with the corresponding

initial datum, then one has

‖ψa(t)− ψ(t)‖Hk .
1

c
, |t| . c r , c � 1

Difficulty: do there exist solutions with the above property? Soliton
resolution conjecture! Something is known, but not too much.

The Theorem says that in this case the soliton dynamics and the dynamics of
the radiation is well described by the approximate equation.
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A modified problem

A modified problem

1

c2
utt − uxx + V ∗ u + c2u = λu .

V (x) =
∑

k>0

Vk

k2
cos(kx), Vk ∈ [−1/2, 1/2] iid . V corresponding probability

space endowed by the product measure.
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Compact theorem

Theorem

There exists A ⊂ (V × R) with

|A ∩ ([N,N + 1]× V)| = 1

s.t. the following holds true. Fix α > 0 and r � 1 and take (c ,V ) ∈ A, then there
exists s∗ with the property that ∀s > s∗ there exist c∗,K1,K2,K3, s.t. for c > c∗

‖ψ0‖ ≤
K1

cα
=⇒ ‖ψ(t)‖ ≤ 2K1

cα
, for |t| ≤ K2c

r .

For the same times one has∑
k

k2s
∣∣|ψk(t)|2 − |ψk(0)|2

∣∣ ≤ K3

c4α
.

Small initial data

Longer time description, but the limit equation is not identified.
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The end

THANK YOU
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