Multiscale computation of oscillatory ODEs with more than two separated time scales

Richard Tsai The University of Texas at Austin

Joint work with Gil Ariel, Bjorn Engquist, and Seong Jun Kim

Oberwolfach, March 22, 2011

Dahlquist's alarm clock

- Mechanical alarm clock on a hard surface
- Fast vibrations lead "slow" drift path
- Drift seems to be deterministic

- Fast vibrations too costly to compute for the time scale of interest.
 Conventional stiff methods damps out oscillations.
- Is it possible to compute the drift path without resolving the fast vibrations for all time?

Fermi-Pasta-Ulam Problem

Fast oscillations:

- costly computation
- accumulation of error

 $\epsilon = 10^{-4}, H = 0.02$

Relaxation oscillators

[Dahlquist et al]

$$\dot{x}_1 = -1 - x_1 + 8y_1^3$$

$$\dot{y}_1 = \frac{1}{\epsilon}(-x_1 + y_1 - y_1^3)$$

- Solutions quickly approach the periodic limit cycle.
- Oscillations induced by stiffness

Synchronization

$$\dot{x}_1 = -1 - x_1 + 8y_1^3 + \epsilon \lambda x_2$$

$$\dot{y}_1 = \frac{1}{\epsilon} (-x_1 + y_1 - y_1^3)$$

$$\dot{x}_2 = (\mu\omega_0 + \epsilon\omega_1)y_2$$

$$\dot{y}_2 = -(\mu\omega_0 + \epsilon\omega_1)x_2$$

$$\epsilon = 10^{-4}, H = 2500, T = \mathcal{O}(\frac{1}{\epsilon})$$

Systems in near resonance

$$\frac{d}{dt}z_1 = i\frac{1}{\epsilon}z_1 + f_1(z_1, z_2), \qquad \lambda = 1 + \delta, \quad |\delta| \in \mathbb{R} \setminus \mathbb{Q} \ll 1$$
$$\frac{d}{dt}z_2 = i\frac{\lambda}{\epsilon}z_2 + f_2(z_1, z_2).$$

- trajectories are ergodic on invariant tori, but in which time scale?
- $\delta = \epsilon^p, p > 1$: in O(1) time, problem effectively in resonance. Effect takes place at a longer time scale.
- $\delta = \epsilon^{1/q}, q > 1$: deal with an intermediate time scale

$$\frac{d}{dt}z_2 = i\frac{1}{\epsilon}z_2 + \frac{\delta}{\epsilon}z_2 + f_2(z_1, z_2).$$

Effective properties in longer time scale

- Diffusion (noise, chaotic fast scales)
- Dispersion (wave equation): Engquist, Holst, Runborg
- Not all systems "thermalize":

FPU:

- Energy among springs do not equilibrate
- Interesting phenomena appear in very long time scale

Objectives

Longtime slow phenomena "driven" by fast oscillations:

$$v' = h(v, w, z, t)$$
$$w' = \frac{1}{\epsilon}g(w, v, z, t)$$
$$z' = \frac{1}{\epsilon^2}f_{\epsilon}(z, v, w, t)$$

- Compute $v \ \& \ w$ at a cost sublinear to $\mathcal{O}(\epsilon^{-1})$
- A method that applies to a wide class of systems.

Our approach

- Characterize the slow behavior by slow variables (effective behavior)
- Numerically sample how they are driven by the fast oscillations

(Temporarily back to the two-scale setting.)

• Give up full resolution of oscillations by averaging:

$$\xi' = f(\xi, \frac{t}{\epsilon}) \longrightarrow \bar{\xi}' = \bar{f}(\bar{\xi})$$

• Evolve the effective behavior of the system at a large time scale. $\xi = \overline{\xi} + \mathcal{O}(\epsilon)$

A "stellar" problem

An example from [Kevorkian,Cole]

$$\begin{cases} r_1'' + a^2 r_1 &= \epsilon r_2^2 \\ r_2'' + b^2 r_2 &= 2\epsilon r_1 r_2 \end{cases}$$

 $X = [x_1, x_2, x_3, x_4]^T = [r_1, r_1'/a, r_2, r_2'/b]^T, t = \epsilon \tilde{t}$

$$X' = \frac{1}{\epsilon} \begin{pmatrix} 0 & a & 0 & 0 \\ -a & 0 & 0 & 0 \\ 0 & 0 & 0 & b \\ 0 & 0 & -b & 0 \end{pmatrix} X + \begin{pmatrix} 0 \\ x_3^2/a \\ 0 \\ 2x_1x_3/b \end{pmatrix}, X_0(0,\epsilon) = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\uparrow$$
Nonlinear interactions.
Nontrivial O(1) effects

Slow variables

$$X' = \frac{1}{\epsilon} \begin{pmatrix} 0 & a & 0 & 0 \\ -a & 0 & 0 & 0 \\ 0 & 0 & 0 & b \\ 0 & 0 & -b & 0 \end{pmatrix} X + \begin{pmatrix} 0 \\ x_3^2/a \\ 0 \\ 2x_1x_3/b \end{pmatrix}, X_0(0,\epsilon) = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Slow variables obtained by a numerical algorithm [Ariel-Engquist-T]

Energy of the oscillators Relative phase of the two oscillators.

 $\begin{aligned} \xi_1 &= x_1^2 + x_2^2 \\ \xi_2 &= x_3^2 + x_4^2 \\ \xi_3 &= b^2 x_1 x_3^2 + x_2 x_3 x_4 - x_1 x_4^2 \end{aligned}$

(These are resonant modes when a=2b)

Evolutions of the slow variables (Stellar problem)

- Compute with consistent initial data $\xi \iff x_{\epsilon}$
- Closure problem: $\frac{d\xi}{dt} = F(\xi)$
- Assume widely separated time scales.
- Efficiency lies in how long (3) is run.

Slow variables

Definition:

 $\mathbf{x} \in \mathcal{D}_0 \mapsto \alpha(\mathbf{x}) \in \mathbb{R}$ $\frac{d}{dt}\mathbf{x} = f_{\epsilon}(\mathbf{x})$ highly oscillatory.

$$\left|\frac{d}{dt}\alpha(\mathbf{x})\right| \le C_0, \quad 0 \le t \le T, \quad 0 < \epsilon < \epsilon_0.$$

Observations

 $\nabla_{\mathbf{x}}\xi_2$

 $\nabla_{\mathbf{x}}\xi_1$

In d dimensions:

- At most d 1 slow directions/coordinates
- At most d 1 slow variables are needed
- Maximal slow chart: $(\xi_1, \cdots, \xi_{d-1}, \phi)$

$$\frac{d}{dt}\xi_j = \mathcal{O}(1) \qquad \frac{d}{dt}\phi = \mathcal{O}(\frac{1}{\epsilon})$$

• If A(x) is slow and non-constant,

$$A = A(\xi_1, \cdots, \xi_{d-1})$$

• Slow variables lie in the null space of L0

Averaging

$$\frac{d\mathbf{x}_{\epsilon}}{dt} = f_{\epsilon}(\mathbf{x}_{\epsilon}, t) \quad \longleftrightarrow \quad \dot{\zeta} = \bar{F}(\zeta) = \int_{S^{1}} F(\zeta, \sigma) d\sigma \quad \text{(closure)}$$
$$\implies |\xi(t) - \zeta(t)| \le C\epsilon$$

 ζ captures the effective behavior of \mathbf{X}_{ϵ} !

More general averaging theorems by Bogoliubov, Sanders, Verhulst, etc.

Monday, March 28, 2011

Averaging and approximations

Averaging over a circle \sim averaging with a suitable kernel.

$$\bar{F}(\zeta(t)) = \int_{S^1} F(\zeta, \sigma) d\sigma \simeq \tilde{K}_{\eta} * \zeta(t)$$

Diffeomorphism $\Phi: U \subset \mathbb{R}^n \mapsto (\xi, \phi) \subset \mathbb{R}^{n-r} \times \mathbb{R}^r$ such that $\xi(x)$ are slow and ϕ fast.

$$\left|\frac{d}{dt}\alpha(x)\right| \le C_0 \implies \alpha(\mathbf{x}) = \tilde{\alpha}(\xi,\phi) = \tilde{\alpha}(\xi) \text{(closure)}$$

HMM involving three scales

Interaction among scales

Complete set of slow variables: (d-2) or (d-1)?

Interaction among scales

$$\begin{aligned} |\frac{d}{dt}\Sigma(x(t))| &= \begin{matrix} \mathcal{O}(1) : & \Sigma(\xi), & |\frac{d}{dt}\Sigma(\xi(t))| \leq C_0 \\ & & \\ \mathcal{O}(1) & & \\ \mathcal{O}(\epsilon) : & \xi(x(t)), & |\frac{d}{dt}\xi(x(t))| \leq C_0 \epsilon^{-1} \\ & & \\ & & \\ \mathcal{O}(\epsilon^2) : & x(t), & \frac{d}{dt}x(t) = \epsilon^{-2}f(x,t) \end{aligned}$$

Complete set of slow variables: (d-2) or (d-1)?

(d-l) ==> new type of slow variables

Interaction among scales

$$|\frac{d}{dt}\Sigma(x(t))| = \begin{array}{c} \mathcal{O}(1): & \Sigma(\xi), & |\frac{d}{dt}\Sigma(\xi(t))| \le C_0 \\ & & \\ \mathcal{O}(1) & & \\ \mathcal{O}(\epsilon): & \xi(x(t)), & |\frac{d}{dt}\xi(x(t))| \le C_0\epsilon^{-1} \\ & & \\ \mathcal{O}(\epsilon^2): & x(t), & \frac{d}{dt}x(t) = \epsilon^{-2}f(x,t) \end{array}$$

Computation in the intermediate scale necessary for efficiency of averaging: $\Sigma(x(t)) = \Sigma(t, t/\epsilon, t/\epsilon^2)$

Averaging

$$\frac{d\mathbf{x}_{\epsilon}}{dt} = f_{\epsilon}(\mathbf{x}_{\epsilon}, t) \quad \longleftrightarrow \quad \mathbf{x}_{\epsilon} = \bar{F}(\zeta) = \int_{\mathbb{S}^{1}} F(\zeta, \sigma) d\sigma \quad \text{(closure)}$$

$$\frac{\dot{\zeta} = \bar{F}(\zeta) = \int_{\mathbb{T}^{2}} F(\zeta, \sigma) d\sigma \quad (\mathbf{closure})$$

$$\dot{\zeta} = \bar{F}(\zeta) = \int_{\mathbb{T}^{2}} F(\zeta, \sigma) d\sigma$$

$$\Rightarrow |\xi(t) - \zeta(t)| \leq C\epsilon$$
Development of efficient averaging algorithms.

A simple example

$$I = x_1^2 + x_2^2$$
$$\frac{d}{dt}I = 2\epsilon^{-1}x_1 + 2I \qquad I(t) = A^2e^{2t} + \mathcal{O}(\epsilon)$$

New type of slow variables!

Monday, March 28, 2011

Iterated averaging

$$\Sigma' = \frac{1}{\epsilon} f(\Sigma, \xi, \frac{t}{\epsilon^2}) + g(\Sigma, \xi, \frac{t}{\epsilon^2})$$

f,g I-periodic in the last variable.

$$X' = \bar{\bar{F}}(x) := \int \bar{F}(x, y) d\mu^x \qquad \sup_{0 \le t \le T} |\Sigma(t) - X(t)| \le C\epsilon$$
$$X(0) = \Sigma(0)$$

$$\bar{F}(x,y) = \bar{g}(x,y) + \bar{\gamma}(x,y) \qquad \quad \bar{g}(x,y) = \int_0^1 g(x,y,s) ds$$
 corrector depending on

$$h(x, y, t) = \int_0^t f(x, y, \epsilon^{-1}s) ds - t\bar{f}(x, y)$$

$$I_1 = x_1^2 + y_1^2$$

$$I_2 = x_2^2 + y_2^2$$

$$\theta = x_1 x_2 + y_1 y_2.$$

Monday, March 28, 2011

Plus signs are results computed by a 2-tier HMM with RK4 on all scales.

Long time scale

$$\mathcal{H} = \frac{1}{2} \sum_{i=1}^{3} p_i^2 + \sum_{i=1}^{3} \left[\frac{1}{2} (q_{i+1} - q_i)^2 + \frac{\epsilon}{3} (q_{i+1} - q_i)^3 \right] \qquad q_0 = q_3, \ q_4 = q_1$$

Rescaling time, $s = \epsilon^2 t$, and denoting $[\cdot]' = (d/ds)$

"new" type of slow variables:

$$I_{1}' = \frac{18}{\epsilon} p_{2}q_{2}(2q_{3} + q_{2})$$

$$I_{2}' = -\frac{18}{\epsilon} p_{3}q_{3}(2q_{3} + q_{2})$$

$$\theta' = \frac{3}{\epsilon} (p_{2}q_{2} - p_{3}q_{3})(2q_{3} + q_{2})$$

$$\mathcal{H} = \frac{1}{2} \sum_{i=1}^{3} p_i^2 + \sum_{i=1}^{3} \left[\frac{1}{2} (q_{i+1} - q_i)^2 + \frac{\epsilon}{3} (q_{i+1} - q_i)^3 \right]$$

 $\epsilon = 10^{-4}, H = 10$

With similar errors, HMM is many digits faster than Verlet.

Averaging over a torus

Monday, March 28, 2011

Consider a pair of harmonic oscillators for $\mathbf{x} = [x_1, v_1, x_2, v_2, x_3, v_3]^T$,

$$\dot{\mathbf{x}} = \mathbf{F}_{\epsilon}(\mathbf{x}) = \frac{1}{\epsilon} \begin{bmatrix} v_1 \\ -x_1 \\ \lambda_1 v_2 \\ -\lambda_1 x_2 \\ \lambda_2 v_3 \\ -\lambda_2 x_3 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

(8)

where $\lambda_1 = 1 + \delta\sqrt{2}$, $\lambda_2 = 1 + \delta\sqrt{3}$ and $\delta = \epsilon^{\frac{1}{q}}$ with $q = 2, 3, \cdots$.

• \mathbb{T}^3 is defined by three functions $\xi_i : \mathbb{R}^6 \to \mathbb{R}^1$, i = 1, 2, 3;

$$\xi_1 = x_1^2 + v_1^2, \ \xi_2 = x_2^2 + v_2^2, \ \xi_3 = x_3^2 + v_3^2.$$
 (9)

• Need to find $\tau : \mathbb{R}^6 \to \mathbb{R}^6$ and $\sigma : \mathbb{R}^6 \to \mathbb{R}^6$ $\to \{\mathbf{F}, \tau, \sigma, \nabla \xi_1, \nabla \xi_2, \nabla \xi_3\}$ forms a set of orthogonal vector fields over $\mathbb{T}^3_{\mathcal{T} \to \mathcal{T}}$

Two orthogonal vector fields

Figure: plot of $|\tau(t)-IC|$ and $|\sigma(t)-IC|$; this show that two integral curves are almost periodic.

Monday, March 28, 2011

Exact averaged force
$$\mathbf{\bar{f}} = \frac{1}{\mu(\mathbb{T}^3)} \int_{\mathbb{T}^3} \mathbf{f} d\mu = \mathbf{0}$$

η	our method	time	time	$\frac{1}{T}\int_0^T \mathbf{f}(\varphi_t \mathbf{x}) dt$	Т
20ϵ	0.0131	29.71	0.731	0.0131	152
30 <i>ϵ</i>	0.0026	43.51	9.75	0.0026	521.6
40 <i>ϵ</i>	7.81e-04	57.56	46.01	7.80e-04	2550
50 <i>ϵ</i>	2.14e-04	70.92	146.0	2.42e-04	8000
60 <i>ϵ</i>	3.45e-05	85.62	29069	3.90e-05	50000

Table: comparison of approximated $||\overline{\mathbf{f}}||_{L^{\infty}}$, time=sec, H = 1, $h = \frac{\epsilon}{5}$

Summary

- Issues in designing an HMM algorithm
- Characterizing effective behavior by slow variables

- Issues with longer time scales
 - interactions between scales
 - detection of new type of slow variables
 - averaging