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Kahan’s discretization

I W. Kahan. Unconventional numerical methods for
trajectory calculations (Unpublished lecture notes, 1993).

ẋ = Q(x) + Bx + c  (x̃ − x)/ε = Q(x , x̃) + B(x + x̃)/2 + c,

where B ∈ Rn×n, c ∈ Rn, each component of Q : Rn → Rn is a
quadratic form, and Q(x , x̃) = (Q(x + x̃)−Q(x)−Q(x̃))/2 is
the corresponding symmetric bilinear function. Thus,

ẋk  (x̃k − xk )/ε, x2
k  xk x̃k , xjxk  (xj x̃k + x̃jxk )/2.

Note: equations for x̃ always linear, the map x̃ = f (x , ε) is
always reversible and birational,

f−1(x , ε) = f (x ,−ε).
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Illustration: Lotka-Volterra system

Kahan’s integrator for the Lotka-Volterra system:{
ẋ = x(1− y),

ẏ = y(x − 1),
 

{
x̃ − x = ε(x̃ + x)− ε(x̃y + xỹ),

ỹ − y = ε(x̃y + xỹ)− ε(ỹ + y).

Explicitly: 
x̃ = x

(1 + ε)2 − ε(1 + ε)x − ε(1− ε)y
1− ε2 − ε(1− ε)x + ε(1 + ε)y

,

ỹ = y
(1− ε)2 + ε(1 + ε)x + ε(1− ε)y
1− ε2 − ε(1− ε)x + ε(1 + ε)y

.
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Left: three orbits of Kahan’s discretization with ε = 0.1,
right: one orbit of the explicit Euler with ε = 0.01.
I J.M. Sanz-Serna. An unconventional symplectic integrator

of W.Kahan. Applied Numer. Math. 16 (1994) 245–250.
A sort of an explanation of a non-spiralling behavior: Kahan’s
integrator for the Lotka-Volterra system is symplectic (Poisson).
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The problem of integrable discretization. Hamiltonian
approach (Birkhäuser, 2003)

Consider a completely integrable flow

ẋ = f (x) = {H, x} (1)

with a Hamilton function H on a Poisson manifold P with a
Poisson bracket {·, ·}. Thus, the flow (1) possesses many
functionally independent integrals Ik (x) in involution.

The problem of integrable discretization: find a family of
diffeomorphisms P → P,

x̃ = Φ(x ; ε), (2)

depending smoothly on a small parameter ε > 0, with the
following properties:
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1. The maps (2) approximate the flow (1):

Φ(x ; ε) = x + εf (x) + O(ε2).

2. The maps (2) are Poisson w. r. t. the bracket {·, ·} or some
its deformation {·, ·}ε = {·, ·}+ O(ε).

3. The maps (2) are integrable, i.e. possess the necessary
number of independent integrals in involution,
Ik (x ; ε) = Ik (x) + O(ε).

While integrable lattice systems (like Toda or Volterra lattices)
can be discretized in a systematic way (based, e.g., on the
r -matrix structure), there is no systematic way to obtain decent
integrable discretizations for integrable systems of classical
mechanics.
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Missing in the book: Hirota-Kimura discretizations

I R.Hirota, K.Kimura. Discretization of the Euler top. J. Phys.
Soc. Japan 69 (2000) 627–630,

I K.Kimura, R.Hirota. Discretization of the Lagrange top. J.
Phys. Soc. Japan 69 (2000) 3193–3199.

Reasons for this omission: discretization of the Euler top
seemed to be an isolated curiosity; discretization of the
Lagrange top seemed to be completely incomprehensible, if not
even wrong.

Renewed interest stimulated by a talk by T. Ratiu at the
Oberwolfach Workshop “Geometric Integration”, March 2006,
who claimed that HK-type discretizations for the Clebsch
system and for the Kovalevsky top are also integrable.
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Hirota-Kimura’s discrete time Euler top


ẋ1 = α1x2x3,

ẋ2 = α2x3x1,

ẋ3 = α3x1x2,

 


x̃1 − x1 = εα1(x̃2x3 + x2x̃3),

x̃2 − x2 = εα2(x̃3x1 + x3x̃1),

x̃3 − x3 = εα3(x̃1x2 + x1x̃2).

Features:
I Equations are linear w.r.t. x̃ = (x̃1, x̃2, x̃3)T:

A(x , ε)x̃ = x , A(x , ε) =

 1 −εα1x3 −εα1x2
−εα2x3 1 −εα2x1
−εα3x2 −εα3x1 1

 ,

result in an explicit (rational) map, which is reversible
(therefore birational):

x̃ = f (x , ε) = A−1(x , ε)x , f−1(x , ε) = f (x ,−ε).
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I Explicit formulas rather messy:

x̃1 =
x1 + 2εα1x2x3 + ε2x1(−α2α3x2

1 + α3α1x2
2 + α1α2x2

3 )

∆(x , ε)
,

x̃2 =
x2 + 2εα2x3x1 + ε2x2(α2α3x2

1 − α3α1x2
2 + α1α2x2

3 )

∆(x , ε)
,

x̃3 =
x3 + 2εα3x1x2 + ε2x3(α2α3x2

1 + α3α1x2
2 − α1α2x2

3 )

∆(x , ε)
,

where ∆(x , ε) = det A(x , ε)

= 1− ε2(α2α3x2
1 + α3α1x2

2 + α1α2x2
3 )− 2ε3α1α2α3x1x2x3.

(Try to see reversibility directly from these formulas!)
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I Two independent integrals:

I1(x , ε) =
1− ε2α2α3x2

1

1− ε2α3α1x2
2
, I2(x , ε) =

1− ε2α3α1x2
2

1− ε2α1α2x2
3
.

I Invariant volume form:

ω =
dx1 ∧ dx2 ∧ dx3

φ(x)
, φ(x) = 1− ε2αiαjx2

k

and bi-Hamiltonian structure found in:
M. Petrera, Yu. Suris. On the Hamiltonian structure of the
Hirota-Kimura discretization of the Euler top. Math. Nachr.,
2010, 283, 1654–1663, arXiv:0707.4382 [math-ph].
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Hirota-Kimura’s discrete time Lagrange top

Equations of motion of the Lagrange top:

ṁ1 = (α− 1)m2m3 + γp2,

ṁ2 = (1− α)m1m3 − γp1,

ṁ3 = 0,
ṗ1 = αp2m3 − p3m2,

ṗ2 = p3m1 − αp1m3,

ṗ3 = p1m2 − p2m1.

It is Hamiltonian w.r.t. Lie-Poisson bracket of e(3), has four
functionally independent integrals in involution: two Casimir
functions,

C1 = p2
1 + p2

2 + p2
3, C2 = m1p1 + m2p2 + m3p3,

the Hamilton function, and the (trivial) “fourth integral”,

H1 =
1
2

(m2
1 + m2

2 + αm2
3) + γp3, H2 = m3.
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Discretization:

m̃1 −m1 = ε(α− 1)(m̃2m3 + m2m̃3) + εγ(p2 + p̃2),

m̃2 −m2 = ε(1− α)(m̃1m3 + m1m̃3)− εγ(p1 + p̃1),

m̃3 −m3 = 0,
p̃1 − p1 = εα(p2m̃3 + p̃2m3)− ε(p3m̃2 + p̃3m2),

p̃2 − p2 = ε(p3m̃1 + p̃3m1)− εα(p1m̃3 + p̃1m3),

p̃3 − p3 = ε(p1m̃2 + p̃1m2 − p2m̃1 − p̃2m1).

As usual, this gives an explicit birational map (m̃, p̃) = f (m,p, ε).
The trivial conserved quantity m3 = const. Quite nontrivial to
find any further conserved quantity!
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Hirota-Kimura’s “method” for finding integrals

Consider the expression A = m2
1 + m2

2 − Bp3 − Cp2
3, and

determine A,B,C by requiring that they are conserved
quantities. For this aim, solve the system of three equations for
these three unknowns:

A + Bp̃3 + Cp̃2
3 = m̃2

1 + m̃2
2,

A + Bp3 + Cp2
3 = m2

1 + m2
2,

A + B p˜3 + C p˜2
3 = m˜ 2

1 + m˜ 2
2

with (m̃, p̃) = f (m,p, ε) and ( m˜ , p˜) = f−1(m,p, ε). Then check
that A,B,C = A,B,C(m,p, ε) are conserved quantities, indeed.
Proceed similarly to determine the conserved quantities
D, . . . ,M from

D = m1p1 + m2p2 − Ep3 − Fp2
3, K = p2

1 + p2
2 − Lp3 −Mp2

3.

Does this make any sense for you???

Yuri B. Suris Kahan-Hirota-Kimura Discretizations



Nevertheless, Hirota-Kimura’s “method” turns out to be valid in
this case and also for remarkably many other Hirota-Kimura
type discretizations.

How should it be interpreted? Solve (symbolically) the system

(A + Bp3 + Cp2
3) ◦ f i(m,p, ε) = (m2

1 + m2
2) ◦ f i(m,p, ε)

with i = −1,0,1. Verify that A = A ◦ f , B = B ◦ f , C = C ◦ f .
Alternatively, solve another copy of the above system with
i = 0,1,2, and check that the solutions coincide. But then this
system should be satisfied for all i ∈ Z. In other words, for any
(m,p) ∈ R6, certain linear combination

A + Bp3 + Cp2
3 − (m2

1 + m2
2)

vanishes along the orbit of (m,p) under the map f .
This is a very special feature of both the map f and the set of
functions (1,p3,p2

3,m
2
1 + m2

2). Also the sets of functions

(1,p3,p2
3,m1p1 + m2p2), (1,p3,p2

3,p
2
1 + p2

2)

have this property. It is formalized in the following definition.
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Hirota-Kimura bases

Definition. For a given birational map f : Rn → Rn, a set of
functions Φ = (ϕ1, . . . , ϕl), linearly independent over R, is
called a HK-basis, if for every x0 ∈ Rn there exists a vector
c = (c1, . . . , cl) 6= 0 such that

c1ϕ1(f i(x0)) + . . .+ clϕl(f i(x0)) = 0 ∀i ∈ Z.

For a given x0 ∈ Rn, the set of all vectors c ∈ Rl with this
property will be denoted by KΦ(x0) and called the null-space of
the basis Φ (at the point x0). This set clearly is a vector space.

Note: we cannot claim that h = c1ϕ1 + ...+ clϕl is an integral of
motion, since vectors c ∈ KΦ(x0) vary from one initial point x0 to
another.
However: existence of a HK-basis Φ with dim KΦ(x0) = d
confines the orbits of f to (n − d)-dimensional invariant sets.
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From HK-bases to integrals

Proposition. If Φ is a HK-basis for a map f , then
KΦ(f (x0)) = KΦ(x0).

Thus, the d-dimensional null-space KΦ(x0) is a Gr(d , l)-valued
integral. Its Plücker coordinates are scalar integrals.

Especially simple is the situation when the null-space of a
HK-basis has dimension d = 1.

Corollary. Let Φ be a HK-basis for f with dim KΦ(x0) = 1 for all
x0 ∈ Rn. Let KΦ(x0) = [c1(x0) : . . . : cl(x0)] ∈ RPl−1. Then the
functions cj/ck are integrals of motion for f .

In other words, normalizing cl(x0) = 1 (say), we find that all
other cj (j = 1, . . . , l − 1) are integrals of motion. It is not clear
whether one can say something general about the number of
functionally independent integrals among them. It varies in
examples (sometimes just = 1 and sometimes > 1).
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Hirota-Kimura bases for the discrete Lagrange top

Thus, results by Hirota and Kimura in the Lagrange top case
can be put as follows:

Theorem. The three sets of functions,

Φ1 = (m2
1 + m2

2, p2
3, p3, 1),

Φ2 = (m1p1 + m2p2, p2
3, p3, 1),

Φ3 = (p2
1 + p2

2, p2
3, p3, 1),

are HK-bases for the discrete time Lagrange top with
one-dimensional null-spaces.

It follows that any orbit lies on a two-dimensional surface in R6

which is intersection of three quadrics and a hyperplane
m3 = const .
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An impression about the complexity of the integrals thus found
can be given by this: KΦ1(x) = [c0 : c1 : c2 : −1], with

c0 =
m2

1 + m2
2 + 2γp3 + ε2c(4)

0 + ε4c(6)
0 + ε6c(8)

0 + ε8c(10)
0

∆1∆2
,

(and similar expressions for c1, c2), where

∆1 = 1 + ε2α(1− α)m2
3 − ε2γp3,

∆2 = 1 + ε2∆
(2)
2 + ε4∆

(4)
2 + ε6∆

(6)
2 ;

coefficients ∆(q) and c(q)
k are polynomials of degree q in the

phase variables.
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A simple integral (unnoticed by Hirota and Kimura) is given by:
Theorem. The set

Γ = (m̃1p1 −m1p̃1, m̃2p2 −m2p̃2, m̃3p3 −m3p̃3)

is a HK-basis for the discrete time Lagrange top with
one-dimensional null-space KΓ(x) = [1 : 1 : I ],

I =
(2α− 1) + ε2(α− 1)(m2

1 + m2
2) + ε2γ(m1p1 + m2p2)/m3

1 + ε2α(1− α)m2
3 − ε2γp3

.

Another result which was unknown to Hirota and Kimura reads:
Theorem. The discrete time Lagrange top possesses an
invariant volume form:

f ∗ω = ω, ω =
dm1 ∧ dm2 ∧ dm3 ∧ dp1 ∧ dp2 ∧ dp3

∆2(m,p)
.
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Further examples of integrable HK-discretizations

Work in progress with A. Pfadler, M. Petrera. An overview given
in arXiv:1008.1040 [nlin.SI] (to appear in Regular and
Chaotic Dyn.). An (incomplete) list of examples:
I Three-wave interaction system.
I Periodic Volterra chain of period N = 3,4:

ẋk = xk (xk+1 − xk−1), k ∈ Z/NZ

I Dressing chain with N = 3:

ẋk + ẋk+1 = x2
k+1 − x2

k + αk+1 − αk , k ∈ Z/NZ, N odd.

I System of two interacting Euler tops.
I Kirchhof and Clebsch cases of the rigid body motion in an

ideal fluid.
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Clebsch case

Clebsch case of the motion of a rigid body in an ideal fluid:

ṁ1 = (ω3 − ω2)p2p3,

ṁ2 = (ω1 − ω3)p3p1,

ṁ3 = (ω2 − ω1)p1p2,

ṗ1 = m3p2 −m2p3,

ṗ2 = m1p3 −m3p1,

ṗ3 = m2p1 −m1p2.

It is Hamiltonian w.r.t. Lie-Poisson bracket of e(3), has four
functionally independent integrals in involution:

Ii = p2
i +

m2
j

ωk − ωi
+

m2
k

ωj − ωi
, (i , j , k) = c.p.(1,2,3),

and H4 = m1p1 + m2p2 + m3p3.
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Hirota-Kimura discretization of the Clebsch system

Hirota-Kimura-type discretization (proposed by T. Ratiu on
Oberwolfach Meeting “Geometric Integration”, March 2006):

m̃1 −m1 = ε(ω3 − ω2)(p̃2p3 + p2p̃3),

m̃2 −m2 = ε(ω1 − ω3)(p̃3p1 + p3p̃1),

m̃3 −m3 = ε(ω2 − ω1)(p̃1p2 + p1p̃2),

p̃1 − p1 = ε(m̃3p2 + m3p̃2)− ε(m̃2p3 + m2p̃3),

p̃2 − p2 = ε(m̃1p3 + m1p̃3)− ε(m̃3p1 + m3p̃1),

p̃3 − p3 = ε(m̃2p1 + m2p̃1)− ε(m̃1p2 + m1p̃2).

What follows is based on: M. Petrera, A. Pfadler, Yu. Suris. On
integrability of Hirota-Kimura type discretizations. Experimental
study of the discrete Clebsch system. Experimental Math.,
2009, 18, 223–247, arXiv:0808.3345 [nlin.SI]
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A birational map(
m̃
p̃

)
= f (m,p, ε) = M−1(m,p, ε)

(
m
p

)
,

M(m,p, ε) =



1 0 0 0 εω23p3 εω23p2
0 1 0 εω31p3 0 εω31p1
0 0 1 εω12p2 εω12p1 0
0 εp3 −εp2 1 −εm3 εm2
−εp3 0 εp1 εm3 1 −εm1
εp2 −εp1 0 −εm2 εm1 1

 ,

with ωij = ωi − ωj . The usual reversibility:

f−1(m,p, ε) = f (m,p,−ε).

Numerators and denominators of components of m̃, p̃ are
polynomials of degree 6, the numerators of p̃i consist of 31
monomials, the numerators of m̃i consist of 41 monomials, the
common denominator consists of 28 monomials.
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Phase portraits
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An orbit of the discrete Clebsch system with ω1 = 0.1, ω2 = 0.2,
ω3 = 0.3 and ε = 1; projections to (m1,m2,m3) and to
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Results for the discrete Clebsch system

Theorem. a) The set of functions

Φ = (p2
1,p

2
2,p

2
3,m

2
1,m

2
2,m

2
3,m1p1,m2p2,m3p3,1)

is a HK-basis for f , with dim KΦ(m,p) = 4. Thus, any orbit of f
lies on an intersection of four quadrics in R6.
b) The following four sets of functions are HK-bases for f with
one-dimensional null-spaces:

Φ0 = (p2
1,p

2
2,p

2
3,1),

Φ1 = (p2
1,p

2
2,p

2
3,m

2
1,m

2
2,m

2
3,m1p1),

Φ2 = (p2
1,p

2
2,p

2
3,m

2
1,m

2
2,m

2
3,m2p2),

Φ3 = (p2
1,p

2
2,p

2
3,m

2
1,m

2
2,m

2
3,m3p3).

There holds: KΦ = KΦ0 ⊕ KΦ1 ⊕ KΦ2 ⊕ KΦ3 .

Yuri B. Suris Kahan-Hirota-Kimura Discretizations



HK-basis Φ0

Theorem. At each point (m,p) ∈ R6 there holds:

KΦ0(m,p) =

[
1
J0

+ ε2ω1 :
1
J0

+ ε2ω2 :
1
J0

+ ε2ω3 : −1
]
,

where

J0(m,p, ε) =
p2

1 + p2
2 + p2

3

1− ε2(ω1p2
1 + ω2p2

2 + ω3p2
3)
.

This function is an integral of motion of the map f .
This is the only “simple” integral of f !
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HK-bases Φ1,Φ2,Φ3

Theorem. At each point (m,p) ∈ R6 there holds:

KΦ1(m,p) = [α1 : α2 : α3 : α4 : α5 : α6 : −1],

KΦ2(m,p) = [β1 : β2 : β3 : β4 : β5 : β6 : −1],

KΦ3(m,p) = [γ1 : γ2 : γ3 : γ4 : γ5 : γ6 : −1],

where αj ,βj , and γj are rational functions of (m,p), even with
respect to ε. They are integrals of motion of the map f . For
j = 1,2,3 they are of the form

h =
h(2) + ε2h(4) + ε4h(6) + ε6h(8) + ε8h(10) + ε10h(12)

2ε2(p2
1 + p2

2 + p2
3)∆

,

∆ = m1p1 + m2p2 + m3p3 + ε2∆(4) + ε4∆(6) + ε6∆(8),

where h stands for any of the functions αj , βj , γj , j = 1,2,3, and
the corresponding h(2q) and ∆(2q) are homogeneous
polynomials in phase variables of degree 2q. For instance,

Yuri B. Suris Kahan-Hirota-Kimura Discretizations



HK-bases Φ1,Φ2,Φ3 (continued)

α
(2)
1 = H3 − I1, α

(2)
2 = −I1, α

(2)
3 = −I1,

β
(2)
1 = −I2, β

(2)
2 = H3 − I2, β

(2)
3 = −I2,

γ
(2)
1 = −I3, γ

(2)
2 = −I3, γ

(2)
3 = H3 − I3,

where H3 = p2
1 + p2

2 + p2
3. The four integrals J0, α1, β1 and γ1

are functionally independent.
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Complexity issues

The claims of the last two theorems refer to the solutions of the
following systems:

(c1p2
1 + c2p2

2 + c3p2
3) ◦ f i = 1,

(α1p2
1 + α2p2

2 + α3p2
3 + α4m2

1 + α5m2
2 + α6m2

3) ◦ f i = m1p1 ◦ f i ,

(β1p2
1 + β2p2

2 + β3p2
3 + β4m2

1 + β5m2
2 + β6m2

3) ◦ f i = m2p2 ◦ f i ,

(γ1p2
1 + γ2p2

2 + γ3p2
3 + γ4m2

1 + γ5m2
2 + γ6m2

3) ◦ f i = m3p3 ◦ f i .

The first one has to be solved for one non-symmetric range of
l − 1 = 3 values of i , or for two different such ranges. The last
three systems have to be solved for a non-symmetric range of
l − 1 = 6 values of i . This can be done numerically (in rational
arithmetic) without any difficulties, but becomes (nearly)
impossible for a symbolic computation, due to complexity of f 2.
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Complexity of f 2

Degrees of numerators and denominators of f 2:

deg degp1
degp2

degp3
degm1

degm2
degm3

Denom. of f 2 27 24 24 24 12 12 12
Num. of p1 ◦ f 2 27 25 24 24 12 12 12
Num. of p2 ◦ f 2 27 24 25 24 12 12 12
Num. of p3 ◦ f 2 27 24 24 25 12 12 12
Num. of m1 ◦ f 2 33 28 28 28 15 14 14
Num. of m2 ◦ f 2 33 28 28 28 14 15 14
Num. of m3 ◦ f 2 33 28 28 28 14 14 15

The numerator of the p1-component of f 2(m,p), as a
polynomial of mk ,pk , contains 64 056 monomials; as a
polynomial of mk ,pk , and ωk , it contains 1 647 595 terms.

Need new ideas! The main one: find (observe numerically)
linear relations between the components of KΦ(x0), and then
use them to replace the dynamical relations.
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Example

Plotting solutions (c1, c2, c3) of the system

(c1p2
1 + c2p2

2 + c3p2
3) ◦ f i = 1, i = 0,1,2

with varying initial data, we get:

−15

−10

−5

0

−14−12−10−8−6−4−20
−15

−10

−5

0

Komp. 1,2,3

Straight line two linear relations between (c1, c2, c3)!
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Summary for the Clebsch system

We established the integrability of the Hirota-Kimura
discretization of the Clebsch system, in the sense of
I existence, for every initial point (m,p) ∈ R6, of a

four-dimensional pencil of quadrics containing the orbit of
this point;

I existence of four functionally independent integrals of
motion (conserved quantities).

This remains true also for an arbitrary flow of the Clebsch
system (with one “simple” and three very big integrals).

Our proofs are computer assisted. We did not find a general
structure, which would provide us with less computational
proofs and with more insight. In particular, nothing like a Lax
representation has been found. Nothing is known about the
existence of an invariant Poisson structure for these maps.
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Conjecture

The previous discussion seems to support the following
Conjecture. For any algebraically completely integrable system
with a quadratic vector field, its Hirota-Kimura discretization
remains algebraically completely integrable
pushed forward in our paper in “Exp. Math.”. However, at
present we have a number of apparent counterexamples (it is
extremely difficult to prove non-integrability), including the so
called Zhukovsky-Volterra gyrostat. However, the HK
discretization maintains integrability much more often than a
mere coincidence would allow.

The full story still has to be clarified.
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