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I. A REVIEW OF THE STANDARD HMC ON RN
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• Aim: obtain samples q(n), n = 0,1, . . . , from a probability

density π ∝ exp
(
− V (q)

)
in RN .

• Write V (q) = 1
2⟨q, Lq⟩+ Φ(q), L sym. pos. semdef. (perhaps

L = 0), so that π ∝ exp
(
1
2⟨q, Lq⟩+Φ(q)

)
.

• HMC (Duane et al 1987) includes three ingredients:

A Hamiltonian flow in R2N .

A numerical integrator for that flow.

An accept/reject rule.
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Hamiltonian flow in R2N

• Intoduce Hamiltonian H(q, p) = 1
2⟨p,M

−1p⟩+ 1
2⟨q, Lq⟩+ Φ(q).

M is a user specified sym. pos. def. (‘mass’) matrix, p auxiliary

variable (‘momentum’), H total energy (kinetic+potential).

• Associated canonical ODEs are

dq

dt
=

∂H

∂p
= M−1p,

dp

dt
= −

∂H

∂q
= −Lq + f(q), f = −∇Φ.

• For any fixed t, the t-flow Ξt of the system

Ξt(q(0), p(0)) = (q(t), p(t))

preserves the volume-element dq dp and the value of H.
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• Therefore Ξt also preserves the measure in the phase space

R2N with density Π(q, p) ∝ exp(−H(q, p)), or

Π(q, p) ∝ exp
(
− 1

2⟨p,M
−1p⟩

)
exp

(
− 1

2⟨q, Lq⟩ −Φ(q)
)

. . . and by implication the q-marginal, ie our target π. (The

marginal of p is N(0,M).)

• Hence if q(0) is distributed according to target π and we draw

p(0) ∼ N(0,M), then q(t) will also be distributed according to π.

• This suggests the following . . .
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• ‘Idea for an algorithm’ (T and M have been fixed.)

— Given q(n), draw p(n) ∼ N(0,M).

— Find (q∗, p∗) = ΞT (q(n), p(n)).

— Set q(n+1) = q∗, discard p∗, n← n+1.

• The transition q(n) 7→ q(n+1) defines a Markov chain that has

the target π as invariant distribution.

• The chain is reversible. Transitions are non-local.
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A numerical integrator for the canonical equations

• In practice analytic expression of Ξt not available and one has

to resort to numerical approximations.

• Integrator must be volume preserving and reversible.

• Verlet is method of choice. Convenient to see it here as a

splitting algorithm Ψh = Ξ
h/2
1 ◦Ξh

2 ◦Ξ
h/2
1 , where Ξt

1 and Ξt
2 are

the flows of the canonical systems with Hamiltonian functions

H1 = 1
2⟨q, Lq⟩+Φ(q) , H2 = 1

2⟨p,M
−1p⟩, H = H1 +H2.
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Accept/reject

• Since Verlet does not conserve H exactly, numerical solution

does not preserve Π.

• Exact conservation is enforced through the Metropolis-Hastings

rule: if (q(n), p(n)) is current state of chain and (q∗, p∗) (‘the

proposal’) is the numerically computed approximation at the end

of a time-interval of length T , then compute

a = min
(
1, exp

(
H(q(n), p(n))−H(q∗, p∗)

))
.

• Set q(n+1) = q⋆ with probability a (‘acceptance’); otherwise

set q(n+1) = q(n) (‘rejection’).
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Choice of mass matrix (Crucial for efficiency.)

• From canonical equations:

d2q

dt2
= −M−1Lq +M−1f(q).

• Consider case f ≡ 0 and L is pos. def. and has some very large
eigenvalues (π is normal with some very small variances),

choice M = I implies inefficiency (Verlet step h adjusted
to smallest variance of π/largest eigenvalue of L).

choice M = L (large mass in directions of large force)
then d2q/dt2 = −q. Both q and ‘velocity’ v = dq/dt are slowly
varying; v is of the size of q (p = Mv = Lv is large).
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• This suggests to use M = L and to write dynamics for Verlet

integration in q, v variables:

dq

dt
= v,

dv

dt
= −q + L−1f(q).

• v ∼ N(0, L−1) and initial value should be drawn accordingly.

• Also in accept/reject compute H in terms of v:

H = 1
2⟨v, Lv⟩+

1
2⟨q, Lq⟩+Φ(q).
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II. THE PROBLEM
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• π0 a non-degenerate (non-Dirac) centred Gaussian measure
with covariance operator C in (infinite-dimensional, separable)
Hilbert space H.

[C is a positive, self-adjoint, nuclear (ie its eigenvalues are summ-
able), its eigenfunctions span H. (eg C inverse Laplacian in L2 +
bd; corresponding to Brownian motion and Brownian bridge.)]

• Aim is to sample from a probability measure π defined by its
density with respect to π0:

dπ

dπ0
(q) ∝ exp

(
−Φ(q)

)
.

(Φ small relative to C−1.)

• Sources: conditioned diffusion; Bayesian approach to inverse
problems . . .
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• May also consider case where H is replaced by RN with very
large N and C by a sym. pos. def. matrix with some of its
eigenvalues close to 0. (High-dimensional Gaussian with some
very small variances.)

• Such finite-dimensional version is required for implementation.

• Standard HMC:

— not applicable in Hilbert space setting. (No standard

density of target π.)

— applicable in finite-dimensional setting . . .

. . . with performance that rapidly deteriorates as N ↑ ∞.
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• Situation similar to that for explicit time integrators for PDE

du/dt = Au, with A an unbounded operator in H: they only

make sense if equation has been first discretized in space and

their performance degrades as the discretization is refined.

• Here we wish to construct an algorithm that may be expressed

on the Hilbert space setting (and is therefore likely to perform

uniformly well as N ↑ ∞ in finite-dimensional approximations).
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III. NEW ALGORITHM
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Hamiltonian flow in H×H

• In finite-dimensional version, reference Gaussian measure π0
has a density ∝ exp(12⟨q, C

−1q⟩) wrt standard Lebesgue measure.
(Note there is no Lebesgue measure on H!)

• Hence target π has standard density exp
(
1
2⟨q, C

−1q⟩+Φ(q)
)
: a

format we considered earlier with the notation L = C−1.

• Earlier discussion suggests to proceed as follows:

— Introduce Gaussian measure Π0 on H×H given by
Π0(dq, dv) = π0(dq)⊗ π0(dv).

— Introduce measure Π on H×H given by dΠ/dΠ0 ∝
exp

(
−Φ(q)

)
. Target π is q-marginal of Π.
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— Consider system:

dq

dt
= v ,

dv

dt
= −q + C f(q), f = −DΦ.

• Under natural hypotheses, it may be shown that

— System defines a global flow Ξt on H×H.

— Ξt preserves the measure Π on H×H.

— (q(n+1), v(n+1)) = ΞT (q(n), v(n)) , v(n) ∼ π0 defines

via q(n) 7→ q(n+1), a Markov chain reversible wrt to π.
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• System preserves formally

H(q, v) =
1

2
⟨v, C−1v⟩+

1

2
⟨q, C−1q⟩+Φ(q).

(which is in the finite-dimensional case is the old energy) and

hence exp(−H).

• However ⟨q, C−1q⟩ and ⟨v, C−1v⟩ are almost surely infinite in an

infinite-dimensional context. (If C is inverse Laplacian in L2, they

are squares of H1-norms.)
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A numerical integrator

• Use Strang splitting Ψh = Ξ
h/2
1 ◦Ξh

2 ◦Ξ
h/2
1 , where

— Ξ1 is the flow of

dq

dt
= 0 ,

dv

dt
= Cf(q).

— Ξ2 is the flow of

dq

dt
= v ,

dv

dt
= −q.

• Ξ1, Ξ2 available in closed form.
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Accept/Reject rule

• The natural candidate for the acceptance probability is

a = min
(
1, exp

(
H(q(n), v(n))− H(q∗, v∗)

))
,

where H is the invariant we discussed above . . .

• . . . but, as we noted, H is almost surely infinite in H.

• Remedy is to work a formula for the increment H(q(n), v(n))−
H(q∗, v∗) that does not include the offending almost surely infinite

terms.
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• The recipe is:

Φ(qI)−Φ(q0) +
h2

8

(
|C

1
2f(q0)|2 − |C

1
2f(qI)|2

)

+h
I−1∑
i=1

⟨f(qi), vi⟩+
h

2

(
⟨f(q0), v0⟩+ ⟨f(qI), vI⟩

)
.

This makes sense in H and in the finite-dimensional setting

coincides with the energy increment.

• This is discrete analogue of physically meaningful expression:

Φ
(
q(T )

)
−Φ

(
q(0)

)
+

∫ T

0
⟨f

(
q(t)

)
, v(t)⟩ dt.
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MAIN RESULT

THEOREM: The algorithm defines a Markov chain which is

reversible wrt to π.

The proof uses finite-dimensional approximations based on the

eigenspaces of C.
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