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I. A REVIEW OF THE STANDARD HMC ON R¥



e Aim: obtain samples q(”), n = 0,1,..., from a probability
density m oc exp ( — V(q)) in RV,

o Write V(q) = %(q, Lq) + ®©(q), L sym. pos. semdef. (perhaps
L = 0), so that © o< exp (%(q, Lq) + Cb(q)).

e HMC (Duane et al 1987) includes three ingredients:
A Hamiltonian flow in R2%V,
A numerical integrator for that flow.

An accept/reject rule.



Hamiltonian flow in R2Y

e Intoduce Hamiltonian H(q,p) = %(p, M~1p) 4+ %(q,Lq> + d(q).
M is a user specified sym. pos. def. (‘mass’) matrix, p auxiliary
variable (‘momentum’), H total energy (kinetic+potential).

e Associated canonical ODEs are

dg OH 1 dp OH
- = = M , _— = —— = —L y — _VCD
7 P P o q+ f(q), f

e For any fixed ¢, the t-flow =! of the system

='(4(0),p(0)) = (q(),p(t))

preserves the volume-element dgdp and the value of H.



e Therefore =! also preserves the measure in the phase space
R2N with density M(q,p) < exp(—H(q,p)), or

M(q,p) o< exp (— 3(p, M~ 'p)) exp (- 3(q, La) — P(q))

...and by implication the ¢g-marginal, ie our target «. (The
marginal of p is N(0,M).)

e Hence if ¢(0) is distributed according to target = and we draw
p(0) ~ N(0, M), then ¢(t) will also be distributed according to .

e [ his suggests the following ...



e ‘Idea for an algorithm’ (T and M have been fixed.)
— Given ¢, draw p(™) ~ N(0, M).

— Find (¢*,p*) = =T (¢, p("M).

— Set q(n"H) = ¢*, discard p*, n + n+ 1.

e [ he transition q(”) oy q(”+1) defines a Markov chain that has
the target =« as invariant distribution.

e [ he chain is reversible. Transitions are non-local.



A numerical integrator for the canonical equations

e In practice analytic expression of =! not available and one has
to resort to numerical approximations.

e Integrator must be volume preserving and reversible.

e Verlet is method of choice. Convenient to see it here as a
splitting algorithm W, = E}ll/z oEgoE}f/Q, where =} and =4 are

the flows of the canonical systems with Hamiltonian functions

Hy=3(q,Lg) + ®(q) , Hp=3(p,M 'p), H=H + Hp.



Accept/reject

e Since Verlet does not conserve H exactly, numerical solution
does not preserve [1.

e Exact conservation is enforced through the Metropolis-Hastings
rule: if (¢, p(M) is current state of chain and (q¢*,p*) (‘the
proposal’) is the numerically computed approximation at the end
of a time-interval of length 7', then compute

a = min<1, eXD(H(q("),p(”)) — H(q*,p*))> -

e Set q(’”+1) = ¢* with probability a (‘acceptance’); otherwise
set ¢("1t1) = ¢(n) (‘rejection).



Choice of mass matrix (Crucial for efficiency.)

e From canonical equations:

Pq _ M 1Lg+ M1 (q)
dt2 '

e Consider case f =0 and L is pos. def. and has some very large
eigenvalues (7 is normal with some very small variances),

choice M = I implies inefficiency (Verlet step h adjusted
to smallest variance of w/largest eigenvalue of L).

choice M = L (large mass in directions of large force)
then d?q/dt? = —q. Both ¢ and ‘velocity’ v = dq/dt are slowly
varying; v is of the size of ¢ (p = Mv = Lv is large).



e T his suggests to use M = L and to write dynamics for Verlet
integration in ¢, v variables:

dg dv

o= —1

e v~ N(0,L~1) and initial value should be drawn accordingly.

e Also in accept/reject compute H in terms of v:

H = (v, Lv) + 3(q, Lg) + ®(q).

N|—
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II. THE PROBLEM

11



e 7o a non-degenerate (non-Dirac) centred Gaussian measure
with covariance operator C in (infinite-dimensional, separable)
Hilbert space H.

[C is a positive, self-adjoint, nuclear (ie its eigenvalues are summ-
able), its eigenfunctions span #. (eg C inverse Laplacian in L? +
bd; corresponding to Brownian motion and Brownian bridge.)]

e Aim is to sample from a probability measure n defined by its
density with respect to mg:

dm

O exp(—®(q)).

(b small relative to ¢~1.)

e Sources: conditioned diffusion; Bayesian approach to inverse
problems . ..

12



e May also consider case where ‘H is replaced by RN with very
large N and C by a sym. pos. def. matrix with some of its
eigenvalues close to 0. (High-dimensional Gaussian with some
very small variances.)
e Such finite-dimensional version is required for implementation.
e Standard HMC:
— not applicable in Hilbert space setting. (No standard
density of target «.)

— applicable in finite-dimensional setting ...

... with performance that rapidly deteriorates as N 1 oo.
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e Situation similar to that for explicit time integrators for PDE
du/dt = Awu, with A an unbounded operator in H: they only
make sense if equation has been first discretized in space and
their performance degrades as the discretization is refined.

e Here we wish to construct an algorithm that may be expressed
on the Hilbert space setting (and is therefore likely to perform
uniformly well as N 1 oo in finite-dimensional approximations).
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III. NEW ALGORITHM
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Hamiltonian flow in H x H

e In finite-dimensional version, reference Gaussian measure mq
has a density « exp(%<q,C_1q>) wrt standard Lebesgue measure.
(Note there is no Lebesgue measure on H!)

e Hence target m has standard density exp (%<q,c—1q> —I—Cb(q)): a

format we considered earlier with the notation I = ¢~ 1.
e Earlier discussion suggests to proceed as follows:

— Introduce Gaussian measure g on H x ‘H given by
Mo(dg, dv) = mp(dg) ® mo(dv).

— Introduce measure 1 on H x H given by dIl/dlMNg
exp(—CD(q)). Target = is g-marginal of TI1.
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— Consider system:

dq dv
— = — = —q+ZC = —D®.
d v, at q fle), f

e Under natural hypotheses, it may be shown that
— System defines a global flow =! on H x H.
— =t preserves the measure M on H x H.
— (gD 1)y = =T (¢(1) ()) (") © 7y defines

via q(") — q(”+1), a Markov chain reversible wrt to .
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e System preserves formally

H(g0) = 2 (0,C7 1) + = (0,¢72a) + (o).

(which is in the finite-dimensional case is the old energy) and

hence exp(—H).

e However (q,C~1q) and (v,C~1v) are almost surely infinite in an
infinite-dimensional context. (If C is inverse Laplacian in L2 they
are squares of Hl-norms.)
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A numerical integrator

e Use Strang splitting W, = E?/Q

— =1 is the flow of

@—O dv

— —h/2
o=lo :}{/ . where

=0, —=C .
o pn f(q)
— —o is the flow of
dq dv
- — U, -, — — (4.
dt dt

e —1, —-> available in closed form.
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Accept/Reject rule

e [ he natural candidate for the acceptance probability is

a = min(l,exp(H(q(”),v(”)) — H(q*,v*)>),

where H is the invariant we discussed above ...
e ...but, as we noted, H is almost surely infinite in H.

e Remedy is to work a formula for the increment H(g(™), v(m)) —
H(g*, v*) that does not include the offending almost surely infinite
terms.
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e [ he recipe is:

h? 1 2 1 2
®(ar) — P(a0) + (102 (a0 ~ 12 £ (an) )

h

+hz (f(a), vi) + 5 ((£(g0), v0) + {Flan),vn)).

This makes sense in H and in the finite-dimensional setting
coincides with the energy increment.

e [ his is discrete analogue of physically meaningful expression:

o (q(T)) - ®(q(0)) + / fa(®)), v(®)) dt
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MAIN RESULT

THEOREM: The algorithm defines a Markov chain which is
reversible wrt to .

The proof uses finite-dimensional approximations based on the
eigenspaces of C.
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