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Evolution equations

Consider time-dependent PDE
0

0
Eu(tag) = F<t7§7 U(ta 5)7 aé-
tcl0,T], ¢€€QcR

subject to appropriate initial and boundary conditions.

u(t,§), )

Main assumption: The essential support

{€eR; Ju(t, )| > e}

is “small” and varying with time.

Meshfree integrator provides numerical solution

Un(é) ~ U(t,,,f)
at discretetimes 0=t < t1 < b <...<ty=T.



Space discretization

Standard procedures:
» finite differences
» (moving) finite elements
» pseudospectal methods (e.g., in QM)

> ...

In this talk: meshfree methods
spatial function (&) is reconstructed by interpolation

Important issue: appropriate choice of basis functions

Compactly supported radial basis functions
Schaback, Wendland, Wu: several papers ~ 1995
stationary problems
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Space discretization — Wendland rbf

Interpolate £ : RY — R by radial basis functions

) ~ s(€) =D _MP(E—n), &) =v(ll)

neH

using center points H = {ny, ..., nm}. Our choice is
Y(r) = (1—r)%(35r° + 18r + 3)

Coefficients A, are determined by interpolation matrix

B = (CD(??,' - le)){mv,,j}eH

Positive definite (independently of the choice of points).
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Center points (bullets) and check points (crosses)

X
Choose check points as <
circumcenters of a X
Delaunay triangulation X " z
of the center points. x x
X

» Check points maximize the local error bound.

» Adding such a check point as a new center point
minimizes the growth of the condition number of
interpolation matrix.

» Adding new points is simple.
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Principles of a meshfree integrator

Residual subsampling

* Choose a set of candidate interpolation points

REPEAT
* Interpolate the current solution u,(&) with respect to
the actual set of candidate interpolation points
« Check error and add/remove points using the

thresholds 6,, 6.
*x Update the set of candidate interpolation points

UNTIL the set of candidate points remains fixed
« Take this set for the time step
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Principles of a meshfree integrator, cont.

A single time step

« Start with set of candidate points
REPEAT
x Compute the check points
x Evaluate the current solution at the set of integration
points (center and check pts.)
« Perform the time step and control the error (both,
temporal and spatial)
x |f necessary, add new interpolation points using the
monitor function and 6,

UNTIL the set of interpolation points remains fixed

x Accept time step and new solution
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Meshfree integrator

As an example, consider a linear differential equation

dru(t,§) = Au(t, €)
Approximate Au(t, &) by

) =A> M(O(E—n) =D A (D)AD(E —n).

neH neH
This gives
Ors(t, )| n = BaB 7 's(t,)|n linear ODE

5= (A001-)

Caliari, A.O., Rainer (2010)

B = (®(n—m))

{nimi}eH {nimjyeH



Example: Molenkamp—Crowley

Consider the Molenkamp—Crowley equation

Oru = Ox(au) + 0, (bu)
with

a(x,y) =2my, b(x,y)=—2nx
The initial pulse
uo(x,y) = exp(—10(x — 0.2)> — 10(y — 0.2)*)
rotates in time t = 1 once around the origin.
Two numerical experiments
» achieved accuracy (in terms of prescribed tolerance)

» long term computation

Only spatial error (exponential integrator is exact in time).
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Global error at t = 1

error
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Achieved accuracy at t = 1 as function of prescribed tolerance
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Required number of radial basis functions

number of functions

1 | | |
10 10° 10" 10
prescribed tolerance

-2
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Long term integration (100 turns)
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Nonlinear Schrodinger equations, soliton dynamics

Nonlinear Schrodinger equation in the semi-classical regime

2

. €

|58tw = _wa + V(Xa}/)iﬁ - |¢|2p¢a (Xay) € R2
with e = 0.01, p = 0.2 and the harmonic potential
V(ix,y)=ax®*+by?, a=15 b=1

(relevant in the theory of Bose—Einstein condensates);
solitary waves move on Lissajous curves.

Space discretization: radial basis functions

Time discretization: splitting method

Caliari, Squassina (2010); Caliari, A.O., Rainer (2011)



Soliton dynamics, numerical example
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Linearised exponential integrators

These integrators are based on the following ideas:

» Linearise the problem o' = F(u), u(0)= up

in each step at the initial value u, to get
= Ju+ g,(u)

with Jy = Df(u,), ga(u) = F(u) — J,u.
» Apply a standard explicit exponential method

Hochbruck, O., Schweitzer (2006, 2009), Tokman (2006)
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The exponential Rosenbrock—Euler method

Applying the exponential Euler method to
v = F(u) = Ju+ g,(u)

yields the exponential Rosenbrock—Euler method. It can be
rewritten as

Upi1 = e up + hgpl(h-/n)gn(”n)
=My + ho1(hdy) (F(up) — Jnun)
= Uy + hoi(hdy)F(up).

The method has order two.
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Linearised exponential multistep methods

Example (Tokman 2006)

tnis = tn + hipr(h)F(un) = S22y (8n(tn) — gn(tn1))
perturbed exponential Rosenbrock—Euler step, order three
Variant (Hochbruck, O. 2010)

Unt1 = Up + ho1(hdy)F(u,) — 2h @3(th)(g,,(u,,) - g,,(unfl))

For J, = 0, both methods coincide; the latter, however, has
better uniform convergence properties.

Apply exponential Adams methods to the locally linearised
equation — linearised exponential multistep methods
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Exponential Rosenbrock-type methods

For the locally linearized problem

ul(t) = F(U(t)) = Jnu(t) +gn(u(t))a U(t,,) = Uy
we consider
i-1
Uni = tn + Gihnp1(CihnJu) F (1) + ho > a(hndn) Doy,

Jj=1

Uns1 = tn + o1 (hn o) F(un) + o Y bi(hnds) D
i=1

with small

D, = F(Uy) — F(un) — J,,(U,,- — u,,).

(Hochbruck, Schweitzer, O. 2006, 2009)
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Embedded methods of order 3 and 4

erow32: Third-order method with second-order error estimate

Co | a1 1 ‘ ®1
b b = 01— 203 203
b1 (,01

erow43: Fourth-order method with third-order error estimate

2 w(E)
1 0 V1
w1 — 143+ 360, 1603 — 48, —2¢p3 + 124
p1 — 14ps 16i3 —2p3
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Computation of exp(hJ)v and (hJ)v

Approach based on interpolation methods.

» Approximate exp(hJ)v by an interpolation polynomial;
involves only matrix-vector multiplications;
short recurrences. Estimate on spectrum required.

» Sensitivity of the interpolation polynomial strongly
depends on the interpolation nodes.

» Real (and complex) Leja points are an attractive choice
(Leja 1957, Reichel 1990)

» distributed in a similar way as Chebyshev points;
» defined recursively - fits well to Newton interpolation;
» superlinear convergence.

parabolic problems: (Bergamaschi, Caliari, Martinez, Vianello)
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Conclusions

Fully adaptive integrator
Applicable to various evolution equations
Small essential support essential

Particularly efficient in high dimensions

vV v.v v VY

Combines well with splitting methods
and exponential integrators

v

Open problem: boundary conditions
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