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Evolution equations

Consider time-dependent PDE

∂

∂t
u(t, ξ) = F

(
t, ξ, u(t, ξ),

∂

∂ξ
u(t, ξ), ...

)

t ∈ [0,T ], ξ ∈ Ω ⊂ R
d

subject to appropriate initial and boundary conditions.

Main assumption: The essential support

{ξ ∈ R
d ; |u(t, ξ)| ≥ ε}

is “small” and varying with time.

Meshfree integrator provides numerical solution

un(ξ) ≈ u(tn, ξ)

at discrete times 0 = t0 < t1 < t2 < . . . < tN = T .
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Space discretization

Standard procedures:

◮ finite differences

◮ (moving) finite elements

◮ pseudospectal methods (e.g., in QM)

◮ ...

In this talk: meshfree methods
spatial function f (ξ) is reconstructed by interpolation

Important issue: appropriate choice of basis functions

Compactly supported radial basis functions
Schaback, Wendland, Wu: several papers ∼ 1995

stationary problems
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Space discretization – Wendland rbf

Interpolate f : R
d → R by radial basis functions

f (ξ) ≈ s(ξ) =
∑

η∈H

ληΦ
(
ξ − η

)
, Φ(ξ) = ψ(‖ξ‖)

using center points H = {η1, ..., ηm}. Our choice is

ψ(r) = (1 − r)6
+(35r 2 + 18r + 3)

Coefficients λη are determined by interpolation matrix

B =
(
Φ

(
ηi − ηj

))

{ηi ,ηj}∈H

Positive definite (independently of the choice of points).
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Center points (bullets) and check points (crosses)

Choose check points as
circumcenters of a
Delaunay triangulation
of the center points.

◮ Check points maximize the local error bound.

◮ Adding such a check point as a new center point
minimizes the growth of the condition number of
interpolation matrix.

◮ Adding new points is simple.
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Principles of a meshfree integrator

Residual subsampling

∗ Choose a set of candidate interpolation points

Repeat

∗ Interpolate the current solution un(ξ) with respect to
the actual set of candidate interpolation points

∗ Check error and add/remove points using the
thresholds θr, θc

∗ Update the set of candidate interpolation points

Until the set of candidate points remains fixed

∗ Take this set for the time step
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Principles of a meshfree integrator, cont.

A single time step

∗ Start with set of candidate points

Repeat

∗ Compute the check points
∗ Evaluate the current solution at the set of integration

points (center and check pts.)
∗ Perform the time step and control the error (both,

temporal and spatial)
∗ If necessary, add new interpolation points using the

monitor function and θr

Until the set of interpolation points remains fixed

∗ Accept time step and new solution
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Meshfree integrator

As an example, consider a linear differential equation

∂tu(t, ξ) = Au(t, ξ)

Approximate Au(t, ξ) by

As(t, ξ) = A
∑

η∈H

λη(t)Φ
(
ξ − η

)
=

∑

η∈H

λη(t)AΦ
(
ξ − η

)
.

This gives

∂ts(t, ·)|H = BAB−1s(t, ·)|H linear ODE

BA =
(
AΦ

(
ηi − ηj

))

{ηi ,ηj}∈H
B =

(
Φ

(
ηi − ηj

))

{ηi ,ηj}∈H

Caliari, A.O., Rainer (2010)
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Example: Molenkamp–Crowley

Consider the Molenkamp–Crowley equation

∂tu = ∂x(au) + ∂y (bu)

with
a(x , y) = 2πy , b(x , y) = −2πx

The initial pulse

u0(x , y) = exp
(
−10(x − 0.2)2 − 10(y − 0.2)2

)

rotates in time t = 1 once around the origin.

Two numerical experiments

◮ achieved accuracy (in terms of prescribed tolerance)

◮ long term computation

Only spatial error (exponential integrator is exact in time).
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Global error at t = 1
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Required number of radial basis functions
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Long term integration (100 turns)
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Nonlinear Schrödinger equations, soliton dynamics

Nonlinear Schrödinger equation in the semi-classical regime

iε∂tψ = −
ε2

2
∆ψ + V (x , y)ψ − |ψ|2pψ, (x , y) ∈ R

2

with ε = 0.01, p = 0.2 and the harmonic potential

V (x , y) = ax2 + by 2, a = 1.5, b = 1

(relevant in the theory of Bose–Einstein condensates);
solitary waves move on Lissajous curves.

Space discretization: radial basis functions

Time discretization: splitting method

Caliari, Squassina (2010); Caliari, A.O., Rainer (2011)
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Soliton dynamics, numerical example
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Linearised exponential integrators

These integrators are based on the following ideas:

◮ Linearise the problem u′ = F (u), u(0) = u0

in each step at the initial value un to get

u′ = Jnu + gn(u)

with Jn = Df (un), gn(u) = F (u) − Jnu.

◮ Apply a standard explicit exponential method

Hochbruck, O., Schweitzer (2006, 2009), Tokman (2006)
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The exponential Rosenbrock–Euler method

Applying the exponential Euler method to

u′ = F (u) = Jnu + gn(u)

yields the exponential Rosenbrock–Euler method. It can be
rewritten as

un+1 = e
hJnun + hϕ1(hJn)gn(un)

= e
hJnun + hϕ1(hJn)

(
F (un) − Jnun

)

= un + hϕ1(hJn)F (un).

The method has order two.
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Linearised exponential multistep methods

Example (Tokman 2006)

un+1 = un + hϕ1(hJn)F (un) −
2h

3
ϕ2(hJn)

(
gn(un) − gn(un−1)

)

perturbed exponential Rosenbrock–Euler step, order three

Variant (Hochbruck, O. 2010)

un+1 = un + hϕ1(hJn)F (un) − 2hϕ3(hJn)
(
gn(un) − gn(un−1)

)

For Jn = 0, both methods coincide; the latter, however, has
better uniform convergence properties.

Apply exponential Adams methods to the locally linearised
equation → linearised exponential multistep methods
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Exponential Rosenbrock-type methods

For the locally linearized problem

u′(t) = F
(
u(t)

)
= Jnu(t) + gn

(
u(t)

)
, u(tn) = un

we consider

Uni = un + cihnϕ1(cihnJn)F (un) + hn

i−1∑

j=1

aij(hnJn)Dnj ,

un+1 = un + hnϕ1(hnJn)F (un) + hn

s∑

i=1

bi(hnJn)Dni .

with small

Dnj = F (Unj ) − F (un) − Jn

(
Unj − un

)
.

(Hochbruck, Schweitzer, O. 2006, 2009)
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Embedded methods of order 3 and 4

erow32: Third-order method with second-order error estimate

c2 a21

b1 b2

b̂1

=

1 ϕ1

ϕ1 − 2ϕ3 2ϕ3

ϕ1

erow43: Fourth-order method with third-order error estimate

1
2

1
2
ϕ1

(
1
2
·
)

1 0 ϕ1

ϕ1 − 14ϕ3 + 36ϕ4 16ϕ3 − 48ϕ4 −2ϕ3 + 12ϕ4

ϕ1 − 14ϕ3 16ϕ3 −2ϕ3
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Computation of exp(hJ)v and ϕ(hJ)v

Approach based on interpolation methods.

◮ Approximate exp(hJ)v by an interpolation polynomial;
involves only matrix-vector multiplications;
short recurrences. Estimate on spectrum required.

◮ Sensitivity of the interpolation polynomial strongly
depends on the interpolation nodes.

◮ Real (and complex) Leja points are an attractive choice
(Leja 1957, Reichel 1990)

◮ distributed in a similar way as Chebyshev points;
◮ defined recursively - fits well to Newton interpolation;
◮ superlinear convergence.

parabolic problems: (Bergamaschi, Caliari, Mart́ınez, Vianello)
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Conclusions

◮ Fully adaptive integrator

◮ Applicable to various evolution equations

◮ Small essential support essential

◮ Particularly efficient in high dimensions

◮ Combines well with splitting methods
and exponential integrators

◮ Open problem: boundary conditions
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