## Meshfree integrators

#### Alexander Ostermann (Innsbruck)

Stefan Rainer (Innsbruck), Marco Caliari (Verona)

Geometric Numerical Integration

Oberwolfach, 24 March 2011

# **Evolution equations**

Consider time-dependent PDE

$$\frac{\partial}{\partial t}u(t,\xi) = F\left(t,\xi,u(t,\xi),\frac{\partial}{\partial\xi}u(t,\xi),\ldots\right)$$
$$t \in [0,T], \quad \xi \in \Omega \subset \mathbb{R}^d$$

subject to appropriate initial and boundary conditions.

Main assumption: The essential support

$$\{\xi \in \mathbb{R}^d ; |u(t,\xi)| \ge \varepsilon\}$$

is "small" and varying with time.

Meshfree integrator provides numerical solution

$$u_n(\xi) \approx u(t_n,\xi)$$

at discrete times  $0 = t_0 < t_1 < t_2 < \ldots < t_N = T$ .

# Space discretization

## Standard procedures:

- finite differences
- (moving) finite elements
- pseudospectal methods (e.g., in QM)

```
▶ ...
```

```
In this talk: meshfree methods spatial function f(\xi) is reconstructed by interpolation
```

Important issue: appropriate choice of basis functions

Compactly supported radial basis functions Schaback, Wendland, Wu: several papers  $\sim$  1995 stationary problems

Interpolate  $f : \mathbb{R}^d \to \mathbb{R}$  by radial basis functions

$$f(\xi) \approx s(\xi) = \sum_{\eta \in H} \lambda_{\eta} \Phi(\xi - \eta), \quad \Phi(\xi) = \psi(\|\xi\|)$$

using center points  $H = \{\eta_1, ..., \eta_m\}$ . Our choice is

$$\psi(r) = (1 - r)^{6}_{+}(35r^{2} + 18r + 3)$$

Coefficients  $\lambda_{\eta}$  are determined by interpolation matrix

$$B = \left(\Phi(\eta_i - \eta_j)\right)_{\{\eta_i, \eta_j\} \in H}$$

Positive definite (independently of the choice of points).

# Center points (bullets) and check points (crosses)

Choose check points as circumcenters of a Delaunay triangulation of the center points.





- Check points maximize the local error bound.
- Adding such a check point as a new center point minimizes the growth of the condition number of interpolation matrix.
- Adding new points is simple.

# Principles of a meshfree integrator

#### Residual subsampling

- $\ast\,$  Choose a set of candidate interpolation points  $$\operatorname{Repeat}$ 
  - \* Interpolate the current solution  $u_n(\xi)$  with respect to the actual set of candidate interpolation points
  - \* Check error and add/remove points using the thresholds  $\theta_{\rm r}$ ,  $\theta_{\rm c}$
  - \* Update the set of candidate interpolation points
- $\operatorname{UNTIL}$  the set of candidate points remains fixed
- \* Take this set for the time step

# Principles of a meshfree integrator, cont.

## A single time step

- \* Start with set of candidate points REPEAT
  - \* Compute the check points
  - Evaluate the current solution at the set of integration points (center and check pts.)
  - \* Perform the time step and control the error (both, temporal and spatial)
  - \* If necessary, add new interpolation points using the monitor function and  $\theta_{\rm r}$

 $\mathrm{U}\mathrm{N}\mathrm{T}\mathrm{I}\mathrm{L}$  the set of interpolation points remains fixed

\* Accept time step and new solution

# Meshfree integrator

As an example, consider a linear differential equation

$$\partial_t u(t,\xi) = Au(t,\xi)$$

Approximate  $Au(t,\xi)$  by

$$As(t,\xi) = A \sum_{\eta \in H} \lambda_{\eta}(t) \Phi(\xi - \eta) = \sum_{\eta \in H} \lambda_{\eta}(t) A \Phi(\xi - \eta).$$

This gives

 $\partial_t s(t,\cdot)|_H = B_A B^{-1} s(t,\cdot)|_H$  linear ODE

$$B_A = \left(A\Phi(\eta_i - \eta_j)\right)_{\{\eta_i,\eta_j\}\in H} \qquad B = \left(\Phi(\eta_i - \eta_j)\right)_{\{\eta_i,\eta_j\}\in H}$$

$$\mathsf{B} = \left( \Phi \big( \eta_i - \eta_j \big) \right)_{\{\eta_i, \eta_j\} \in \mathsf{H}}$$

Caliari, A.O., Rainer (2010)

# Example: Molenkamp–Crowley

Consider the Molenkamp–Crowley equation  $\partial_t u = \partial_x(au) + \partial_y(bu)$ 

with

$$a(x,y) = 2\pi y, \quad b(x,y) = -2\pi x$$

The initial pulse

$$u_0(x, y) = \exp(-10(x - 0.2)^2 - 10(y - 0.2)^2)$$

rotates in time t = 1 once around the origin.

Two numerical experiments

- achieved accuracy (in terms of prescribed tolerance)
- long term computation

Only spatial error (exponential integrator is exact in time).

## Global error at t = 1



Achieved accuracy at t = 1 as function of prescribed tolerance

## Required number of radial basis functions



# Long term integration (100 turns)





#### Alexander Ostermann, Innsbruck

Meshfree integrators

# Nonlinear Schrödinger equations, soliton dynamics

Nonlinear Schrödinger equation in the semi-classical regime

$$\mathrm{i}arepsilon\partial_t\psi=-rac{arepsilon^2}{2}\Delta\psi+V(x,y)\psi-|\psi|^{2p}\psi,\qquad(x,y)\in\mathbb{R}^2$$

with  $\varepsilon = 0.01$ , p = 0.2 and the harmonic potential

$$V(x, y) = ax^2 + by^2$$
,  $a = 1.5, b = 1$ 

(relevant in the theory of Bose–Einstein condensates); solitary waves move on Lissajous curves.

Space discretization: radial basis functions Time discretization: splitting method

Caliari, Squassina (2010); Caliari, A.O., Rainer (2011)

## Soliton dynamics, numerical example















These integrators are based on the following ideas:

► Linearise the problem u' = F(u), u(0) = u<sub>0</sub> in each step at the initial value u<sub>n</sub> to get

$$u'=J_nu+g_n(u)$$

with  $J_n = Df(u_n), \quad g_n(u) = F(u) - J_n u.$ 

Apply a standard explicit exponential method

Hochbruck, O., Schweitzer (2006, 2009), Tokman (2006)

Applying the exponential Euler method to

$$u'=F(u)=J_nu+g_n(u)$$

yields the exponential Rosenbrock–Euler method. It can be rewritten as

$$u_{n+1} = e^{hJ_n}u_n + h\varphi_1(hJ_n)g_n(u_n)$$
  
=  $e^{hJ_n}u_n + h\varphi_1(hJ_n)(F(u_n) - J_nu_n)$   
=  $u_n + h\varphi_1(hJ_n)F(u_n).$ 

The method has order two.

# Linearised exponential multistep methods

## Example (Tokman 2006)

$$u_{n+1} = u_n + h \varphi_1(hJ_n) F(u_n) - \frac{2h}{3} \varphi_2(hJ_n) (g_n(u_n) - g_n(u_{n-1}))$$

perturbed exponential Rosenbrock-Euler step, order three

### Variant (Hochbruck, O. 2010)

$$u_{n+1} = u_n + h \varphi_1(hJ_n)F(u_n) - 2h \varphi_3(hJ_n)(g_n(u_n) - g_n(u_{n-1}))$$

For  $J_n = 0$ , both methods coincide; the latter, however, has better uniform convergence properties.

Apply exponential Adams methods to the locally linearised equation  $\rightarrow$  *linearised exponential multistep methods* 

# Exponential Rosenbrock-type methods

For the locally linearized problem

$$u'(t) = F(u(t)) = J_n u(t) + g_n(u(t)), \quad u(t_n) = u_n$$

we consider

$$U_{ni} = u_n + c_i h_n \varphi_1(c_i h_n J_n) F(u_n) + h_n \sum_{j=1}^{i-1} a_{ij}(h_n J_n) D_{nj},$$
$$u_{n+1} = u_n + h_n \varphi_1(h_n J_n) F(u_n) + h_n \sum_{i=1}^{s} b_i(h_n J_n) D_{ni}.$$

with small

$$D_{nj}=F(U_{nj})-F(u_n)-J_n(U_{nj}-u_n).$$

(Hochbruck, Schweitzer, O. 2006, 2009)

. .

erow32: Third-order method with second-order error estimate

$$\begin{array}{c|c} c_2 & a_{21} \\ \hline b_1 & b_2 \\ \hline \hat{b}_1 \end{array} = \begin{array}{c|c} 1 & \varphi_1 \\ \hline \varphi_1 - 2\varphi_3 & 2\varphi_3 \\ \hline \varphi_1 \end{array}$$

erow43: Fourth-order method with third-order error estimate

Approach based on interpolation methods.

- Approximate exp(hJ)v by an interpolation polynomial; involves only matrix-vector multiplications; short recurrences. Estimate on spectrum required.
- Sensitivity of the interpolation polynomial strongly depends on the interpolation nodes.
- Real (and complex) Leja points are an attractive choice (Leja 1957, Reichel 1990)
  - distributed in a similar way as Chebyshev points;
  - defined recursively fits well to Newton interpolation;
  - superlinear convergence.

parabolic problems: (Bergamaschi, Caliari, Martínez, Vianello)

- Fully adaptive integrator
- Applicable to various evolution equations
- Small essential support essential
- Particularly efficient in high dimensions
- Combines well with splitting methods and exponential integrators
- Open problem: boundary conditions