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Motivation

� Variational Integrators for Multi-Physics Simulations

•Multibody Systems

Simulations courtesy of Taeyoung Lee, Florida Institute of Technology.

•Continuum Mechanics

Simulations courtesy of Eitan Grinspun, Columbia.
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Introduction

� Dirac Structures

• Dirac structures can be viewed as simultaneous generalizations of
symplectic and Poisson structures.

• Implicit Lagrangian and Hamiltonian systems1 provide a unified
geometric framework for studying degenerate, interconnected, and
nonholonomic Lagrangian and Hamiltonian mechanics.

• The category of Lagrange–Dirac sys-
tems are closed under interconnec-
tion, which allows for the distributed
parallel implementation of hierarchi-
cal multiphysics models using the in-
terconnection paradigm.
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1H. Yoshimura, J.E. Marsden, Dirac structures in Lagrangian mechanics. Part I: Implicit Lagrangian systems,
J. of Geometry and Physics, 57, 133–156, 2006.
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Introduction

� Variational Principles

• The Hamilton–Pontryagin principle2 on the Pontryagin bundle
TQ ⊕ T ∗Q, unifies Hamilton’s principle, Hamilton’s phase space
principle, and the Lagrange–d’Alembert principle.

• Provides a variational characterization of implicit Lagrangian and
Hamiltonian systems.

• This naturally leads to the development of variational integration
techniques for interconnected systems.

2H. Yoshimura, J.E. Marsden, Dirac structures in Lagrangian mechanics. Part II: Variational structures, J. of
Geometry and Physics, 57, 209–250, 2006.
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Dirac Structures on Vector Spaces

� Properties

• Let V be a n-dimensional vector space, with the pairing 〈〈 · , · 〉〉
on V ⊕ V ∗ given by

〈〈(v, α), (ṽ, α̃)〉〉 = 〈α, ṽ〉 + 〈α̃, v〉,
where 〈 · , · 〉 is the natural pairing between covectors and vectors.

• A Dirac Structure is a subspace D ⊂ V ⊕ V ∗, such that

D = D⊥.

• In particular, D ⊂ V ⊕ V ∗ is a Dirac structure iff

dimD = n, and 〈α, ṽ〉 + 〈α̃, v〉 = 0,

for all (v, α), (ṽ, α̃) ∈ D.
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Dirac Structures on Manifolds

� Generalizing Symplectic and Poisson Structures

• Let M = T ∗Q.

• The graph of the symplectic two-form Ω : TM×TM → R, viewed
as a map TM → T ∗M ,

vz 7→ Ω(vz, ·),
is a Dirac structure.

• Similarly, the graph of the Poisson structure B : T ∗M × T ∗M →
R, viewed as a map T ∗M to T ∗∗M ∼= TM ,

αz 7→ B(αz, ·),
is a Dirac structure.

• Furthermore, if the symplectic form and the Poisson structure are
related, they induce the same Dirac structure on TM ⊕ T ∗M .
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Motivating Example: Electrical Circuits

� Configuration space and constraints

• The configuration q ∈ E of the electrical circuit is given by
specifying the current in each branch of the electrical circuit.

• Not all configurations are admissible, due to Kirchhoff’s Cur-
rent Laws:

the sum of currents at a junction is zero.

This induce a constraint KCL space ∆ ⊂ TE.

• Its annihilator space ∆◦ ⊂ T ∗E is defined by

∆◦q = {e ∈ T ∗qE | 〈e, f〉 = 0 for all f ∈ ∆q},
which can be identified with the set of branch voltages, and
encodes the Kirchhoff’s Voltage Laws:

the sum of voltages about a closed loop is zero.
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Motivating Example: Electrical Circuits

� Dirac structures and Tellegen’s theorem

• Given ∆ ⊂ TE and ∆◦ ⊂ T ∗E which encode the Kirchhoff’s
current and voltage laws,

DE = ∆⊕∆◦ ⊂ TE ⊕ T ∗E
is a Dirac structure on E.

• Since D = D⊥, we have that for each (f, e) ∈ DE,

〈e, f〉 = 0.

This is a statement of Tellegen’s theorem, which is an impor-
tant result in the network theory of circuits.
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Motivating Example: Electrical Circuits

� Lagrangian for LC-circuits

•Dirac’s theory of constraints was concerned with degenerate
Lagrangians where the set of primary constraints, the image
P ⊂ T ∗Q of the Legendre transformation, is not the whole space.

•Magnetic energy

T (f ) =
∑ 1

2
Lif

2
Li
.

• Electric potential energy

V (q) =
∑ 1

2

q2
Ci

Ci
.

• Lagrangian

L(q, f ) = T (f )− V (q).

c1



c2 c3

L(q, f ) =
`

2
(f `)2 − (qc1)2

2c1
− (qc2)2

2c2
− (qc3)2

2c3
,

∆Q = {f ∈ TQ | ωa(f ) = 0, a = 1, 2} ,
ω1 = −dq` + dqc2,

ω2 = −dqc1 + dqc2 − dqc3.
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Interconnected Systems

� Interconnection of Lagrange–Dirac Systems

• Given two Lagrange–Dirac systems: (Q1, L1,∆1) and (Q2, L2,∆2),
the implicit Euler–Lagrange equations are given by,

(X1,dE1|P1
) ∈ D∆1

, (X2,dE2|P2
) ∈ D∆2

,

where the generalized energy Ei is defined as

Ei(qi, q̇i, pi) = 〈pi, q̇i〉 − L(qi, q̇i).

• The interconnection of these two systems is a Lagrange–Dirac
system on the product Q = Q1 ×Q2 with Lagrangian,

L(q1, q2, q̇1, q̇2) = L1(q1, q̇1) + L2(q2, q̇2),

with constraints
∆ = (∆1 ×∆2) ∩∆int.
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Interconnected Systems

� Interconnection Dirac Structures

• Interconnected Lagrange–Dirac systems can be understood using
the Lagrange–d’Alembert–Pontryagin principle.

• It is also interesting to express it in terms of an interconnection
Dirac structure Dc,

(X1 ×X2,d(E1 + E2)|P ) ∈ Dc,
where Dc = (D∆1

⊕D∆2
) ./ Dint, and the bowtie construc-

tion ./ is given by

DA ./ DB := {(w, α) ∈ TT ∗Q⊕T ∗T ∗Q |w ∈ τTT ∗Q(DA∩DB),

α− Ω[TT ∗Qw ∈
(
τTT ∗Q(DA ∩DB)

)◦}.
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Variational Principles
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Continuous Hamilton–Pontryagin principle

� Pontryagin bundle and Hamilton–Pontryagin principle

• Consider the Pontryagin bundle TQ ⊕ T ∗Q, which has local
coordinates (q, v, p).

• The Hamilton–Pontryagin principle is given by

δ

∫
[L(q, v)− p(v − q̇)] = 0,

where we impose the second-order curve condition, v = q̇ using
Lagrange multipliers p.
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Continuous Hamilton–Pontryagin principle

� Implicit Lagrangian systems

• Taking variations in q, v, and p yield

δ

∫
[L(q, v)− p(v − q̇)]dt

=

∫ [
∂L

∂q
δq +

(
∂L

∂v
− p
)
δv − (v − q̇)δp + pδq̇

]
dt

=

∫ [(
∂L

∂q
− ṗ
)
δq +

(
∂L

∂v
− p
)
δv − (v − q̇)δp

]
dt

where we used integration by parts, and the fact that the variation
δq vanishes at the endpoints.

• This recovers the implicit Euler–Lagrange equations,

ṗ =
∂L

∂q
, p =

∂L

∂v
, v = q̇.
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Continuous Hamilton–Pontryagin principle

� Hamilton’s phase space principle

• By taking variations with respect to v, we obtain the Legendre
transform,

∂L

∂v
(q, v)− p = 0.

• The Hamiltonian, H : T ∗Q→ R, is defined to be,

H(q, p) = ext
v

(
pv − L(q, v)

)
= pv − L(q, v)|p=∂L/∂v(q,v) .

• The Hamilton–Pontryagin principle reduces to,

δ

∫
[pq̇ −H(q, p)] = 0,

which is the Hamilton’s principle in phase space.
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Continuous Hamilton–Pontryagin principle

� Lagrange–d’Alembert–Pontryagin principle

• Consider a constraint distribution ∆Q ⊂ TQ.

• The Lagrange–d’Alembert–Pontryagin principle is given
by

δ

∫
L(q, v)− p(v − q̇)dt = 0,

for fixed endpoints, and variations (δq, δv, δp) of (q, v, p) ∈ TQ⊕
T ∗Q, such that (δq, δv) ∈ (TτQ)−1(∆Q), where τQ : TQ→ Q.

• This gives the implicit Euler–Lagrange equations,

q̇ = v ∈ ∆Q(q), p =
∂L

∂v
, ṗ− ∂L

∂q
∈ ∆◦Q(q).

• This describes degenerate nonholonomic Lagrangian mechanics.
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Discrete Variational Principles
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Discrete Hamilton–Pontryagin principle

� Discrete Pontryagin bundle and Hamilton–Pontryagin
principle

• Consider the discrete Pontryagin bundle (Q × Q) ⊕ T ∗Q,
which has local coordinates (q0

k, q
1
k, pk).

• The discrete Hamilton–Pontryagin principle is given by

δ
∑[

Ld(q
0
k, q

1
k)− pk+1(q1

k − q
0
k+1)

]
= 0,

where we impose the second-order curve condition, q1
k = q0

k+1 using
Lagrange multipliers pk+1

• The discrete Lagrangian Ld is a Type I generating function,
and is chosen to be an approximation of Jacobi’s solution of
the Hamilton–Jacobi equation.
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Discrete Hamilton–Pontryagin principle

� Implicit discrete Lagrangian systems

• Taking variations in q0
k, q1

k, and pk yield

δ
∑[

Ld(q
0
k, q

1
k)− pk+1(q1

k − q
0
k+1)

]
=
∑{

[D1Ld(q
0
k, q

1
k) + pk]δq0

k

−[q1
k − q

0
k+1]δpk+1 + [D2Ld(q

0
k, q

1
k)− pk+1]δq1

k

}
.

• This recovers the implicit discrete Euler–Lagrange equa-
tions,

pk = −D1Ld(q
0
k, q

1
k), pk+1 = D2Ld(q

0
k, q

1
k), q1

k = q0
k+1.
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Discrete Hamilton–Pontryagin principle

� Discrete Hamilton’s phase space principle

• By taking variations with respect to q1
k, we obtain the discrete

Legendre transform,

D2Ld(q
0
k, q

1
k)− pk+1 = 0

• The discrete Hamiltonian, Hd+ : Q×Q∗→ R, is given by,

Hd+(q0
k, pk+1) = ext

q1
k

pk+1q
1
k − Ld(q

0
k, q

1
k)

= pk+1q
1
k − Ld(q

0
k, q

1
k)
∣∣∣
pk+1=D2Ld(q0

k,q
1
k)
.

• The discrete Hamilton–Pontryagin principle reduces to,

δ
∑

[pk+1qk+1 −Hd+(qk, pk+1)] = 0,

which is the discrete Hamilton’s principle in phase space.
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Discrete Hamilton’s Equations and Discrete Hamiltonians

� Discrete Hamilton’s Equations

• The discrete Hamilton’s principle in phase space yields the follow-
ing discrete Hamilton’s equations,

pk = D1Hd+(qk, pk+1), qk+1 = D2Hd+(qk, pk+1)

• From this, it is clear that the discrete Hamiltonian Hd+ is a Type
II generating function of a symplectic transformation.

• The discrete Hamiltonian should approximate the exact discrete
Hamiltonian, given by,

H+
d,exact(qk, pk+1) =

ext
(q,p)∈C2([tk,tk+1],T ∗Q)
q(tk)=qk,p(tk+1)=pk+1

p(tk+1)q(tk+1)−
∫ tk+1

tk

[pq̇ −H(q, p)] dt.
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Nonintegrable Constraints

� Discrete Constraint Distributions

• Given a continuous constraint distribution is ∆Q ⊂ TQ, let ∆◦Q ⊂
T ∗Q be the annihilator codistribution, with a basis {ωa}ma=1.

• Given a retraction R : TQ → Q, we define functions ωad+ :
Q×Q→ R,

ωad+(q0, q1) := ωa
(
q0,R−1

q0
(q1)
)
.

• A discrete constraint distribution ∆d+
Q ⊂ Q×Q is,

∆d+
Q :=

{
(q0, q1) ∈ Q×Q | ωad+(q0, q1) = 0, a = 1, 2, . . . ,m

}
.
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Nonintegrable Constraints

� Discrete Lagrange–d’Alembert–Pontryagin Principle

• The discrete Lagrange–d’Alembert–Pontryagin princi-
ple is

δ

N−1∑
k=0

[
Ld(qk, q

+
k ) + pk+1(qk+1 − q+

k )
]

= 0,

where we require (qk, qk+1) ∈ ∆d+
Q ; furthermore, the variations

(δqk, δq
+
k , δpk+1) of (qk, q

+
k , pk+1) in (Q × Q) ⊕ (Q × Q∗) are

assumed to satisfy δqk ∈ ∆Q(qk), and δq0 = δqN = 0 at the
endpoints.
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Extension to Manifolds

� Retraction

• A retraction on a manifold Q is a smooth mappingR : TQ→ Q
with the following properties:

◦ Let Rq : TqQ→ Q be the restriction of R to TqQ.

◦ Rq(0q) = q, where 0q denotes the zero element of TqQ.

◦With the identification T0qTqQ ' TqQ, Rq satisfies

T0qRq = idTqQ,

where T0qRq is the tangent map of Rq at 0q ∈ TqQ.
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Extension to Manifolds

� Retraction Compatible Charts

• Let Q be an n-dimensional manifold equipped with a retraction
R : TQ→ Q. A coordinate chart (U,ϕ), U ⊂ Q and ϕ : U → Rn
is said to be retraction compatible at q ∈ U if

◦ ϕ is centered at q, i.e., ϕ(q) = 0;

◦ The compatibility condition,

R(vq) = ϕ−1 ◦ Tqϕ(vq),

holds, where we identified T0Rn with Rn as follows: Let ϕ =
(x1, . . . , xn) with xi : U → R for i = 1, . . . , n. Then

vi
∂

∂xi
7→ (v1, . . . , vn).

• A coordinate map ϕ can be obtained using the identification Rq :
TqQ→ Q, and coordinatizing TqQ by introducing a basis.
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Extension to Manifolds

� Retraction Compatible Atlas

• An atlas for the manifold Q is retraction compatible if it con-
sists of retraction compatible coordinate charts.

� Lie Group Example

• On a Lie group G, consider the exponential map exp : g→ G.

• Then, the map Rg : Tg → G,

Rg := Lg ◦ exp ◦TgLg−1,

is a retraction.

• Furthermore, canonical coordinates of the first kind, ψg : Ug → g

ψg := exp−1 ◦Lg−1,

are retraction compatible.
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Extension to Manifolds

� Discrete Lagrange–d’Alembert–Pontryagin Principle with
Retraction

• The discrete Lagrange–d’Alembert–Pontryagin princi-
ple with Retraction is

δ

N−1∑
k=0

{
Ld(qk, q

+
k )+

〈
pk+1,R−1

qk+1
(qk+1)−R−1

qk+1
(q+
k ) 〉} = 0,

where we require (qk, qk+1) ∈ ∆d+
Q ; furthermore, the variations

(δqk, δq
+
k , δpk+1) of (qk, q

+
k , pk+1) in Q × T ∗Q are assumed to

satisfy δqk ∈ ∆Q(qk), and also δq0 = δqN = 0 at the endpoints.

• This variational principle is well-defined semi-globally, and on a
retraction-compatible chart, it reduces to the local expression for
the discrete Lagrange–d’Alembert–Pontryagin principle.
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Extension to Manifolds

� Implications for discrete Dirac structures

• The map (πQ,R) : TQ→ Q×Q induces a local diffeomorphism
of the continuous Pontryagin bundle TQ⊕ T ∗Q with the discrete
Pontryagin bundle (Q×Q)×Q T ∗Q.

• This identification then induces a discrete Dirac structure.

•We have also developed an equivalent characterization of discrete
Dirac structures that more clearly elucidates the role of the geom-
etry of symplectic maps in induced discrete Dirac structures.
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Dirac Structures
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Continuous Dirac Mechanics

� Tulczyjew Triple

T ∗TQ

πTQ
""

γQ

))

TT ∗Q Ω[ //

κQ
oo

τT∗Q
""

TπQ
||

T ∗T ∗Q

πT∗Q
||

TQ T ∗Q

(q, δq, δp, p)
�

""

(q, p, δq, δp)�oo � //

:

||

�

""

(q, p,−δp, δq)
:

||

(q, δq) (q, p)
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Continuous Dirac Mechanics

� Dirac Structures and Constraints

• A constraint distribution ∆Q ⊂ TQ induces a Dirac structure
on T ∗Q,

D∆Q
(z) :=

{
(vz, αz) ∈ TzT ∗Q× T ∗z T ∗Q

∣∣∣
vz ∈ ∆T ∗Q(z), αz− Ω[(vz) ∈ ∆◦T ∗Q(z)

}
where ∆T ∗Q := (TπQ)−1(∆Q) ⊂ TT ∗Q.

• Holonomic and nonholonomic constraints, as well as constraints
arising from interconnections can be incorporated into the Dirac
structure.
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Continuous Dirac Mechanics

� Implicit Lagrangian Systems

• Let γQ := Ω[ ◦ (κQ)−1 : T ∗TQ→ T ∗T ∗Q.

• Given a Lagrangian L : TQ→ R, define DL := γQ ◦ dL.

• An implicit Lagrangian system (L,∆Q, X) is,

(X,DL) ∈ D∆Q
,

where X ∈ X(T ∗Q).

• This gives the implicit Euler–Lagrange equations,

q̇ = v ∈ ∆Q(q), p =
∂L

∂v
, ṗ− ∂L

∂q
∈ ∆◦Q(q).

• In the special case ∆Q = TQ, we obtain,

q̇ = v, ṗ =
∂L

∂q
, p =

∂L

∂v
.
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Continuous Dirac Mechanics

� Implicit Hamiltonian Systems

• Given a Hamiltonian H : T ∗Q→ R, an implicit Hamiltonian
system (H,∆Q, X) is,

(X, dH) ∈ D∆Q
,

which gives the implicit Hamilton’s equations,

q̇ =
∂H

∂p
∈ ∆Q(q), ṗ +

∂H

∂q
∈ ∆◦Q(q).

• In the special case ∆Q = TQ, we recover the standard Hamilton’s
equations,

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.
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Discrete Dirac Structures
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The Geometry of Generating Functions

� Generating Functions of Type I and the κdQ map

• The flow F1 on T ∗Q is symplectic iff there exists S1 : Q×Q→ R,

(iF1
)∗ΘT ∗Q×T ∗Q = dS1.

which gives
p0 = −D1S1, p1 = D2S1.

•We require that the following diagram commutes,

T ∗Q× T ∗Q
κdQ

// T ∗(Q×Q)

Q×Q
iF1

cc

dS1

;;
((q0, p0), (q1, p1)) // (q0, q1, D1S1, D2S1)

(q0, q1)

cc ;;

• This gives rise to a map κdQ : T ∗Q× T ∗Q→ T ∗(Q×Q)

κdQ : ((q0, p0), (q1, p1)) 7→ (q0, q1,−p0, p1).
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The Geometry of Generating Functions

� Generating Functions of Type II and the Ω[d+ map

• The flow F2 on T ∗Q is symplectic iff there exists S2 : Q×Q∗→ R,

(iF2
)∗Θ(2)

T ∗Q×T ∗Q = dS2,

which gives
p0 = D1S2, q1 = D2S2.

•We require that the following diagram commutes,

T ∗Q× T ∗Q
Ω[
d+ // T ∗(Q×Q∗)

Q×Q∗
iF2

cc

dS2

;;
((q0, p0), (q1, p1)) // (q0, p1, D1S2, D2S2)

(q0, p1)

cc ;;

• This gives rise to a map Ω[d+ : T ∗Q× T ∗Q→ T ∗(Q×Q∗)

Ω[d+ : ((q0, p0), (q1, p1)) 7→ (q0, p1, p0, q1).
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(+)-Discrete Dirac Mechanics

� Discrete Tulczyjew Triple

T ∗(Q×Q)

πQ×Q
""

γd+
Q

))

T ∗Q× T ∗Q
Ω[d+

//

κdQ
oo

τd+
T∗Q ""

πQ×πQ
||

T ∗(Q×Q∗)

πQ×Q∗
||

Q×Q Q×Q∗

(q0, q1,−p0, p1)
�

""

((q0, p0), (q1, p1))�oo � //

:

||

�

""

(q0, p1, p0, q1)
:

||

(q0, q1) (q0, p1)
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(+)-Discrete Dirac Mechanics

� Discrete Induced Dirac Structure

• Define the discrete induced Dirac structureDd+
∆Q
⊂ (T ∗Q×

T ∗Q)× T ∗(Q×Q∗) by

Dd+
∆Q

:=
{

((z, z+), αẑ) ∈ (T ∗Q× T ∗Q)× T ∗(Q×Q∗) |(
z, z+) ∈ ∆d+

T ∗Q, αẑ − Ω[d+

(
(z, z+)

)
∈ ∆◦Q×Q∗

}
,

where,

∆d+
T ∗Q :=

{
((q0, p0), (q1, p1)) ∈ T ∗Q× T ∗Q | (q0, q1) ∈ ∆d+

Q

}
,

∆◦Q×Q∗ :=
{

(q, p, αq, 0) ∈ T ∗(Q×Q∗) | αq ∈ ∆◦Q(q)
}
.
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(+)-Discrete Dirac Mechanics

� Implicit Discrete Lagrangian Systems

• Let γd+
Q

:= Ω[d+ ◦ (κdQ)−1 : T ∗(Q×Q)→ T ∗(Q×Q∗).

• Given a discrete Lagrangian Ld : Q × Q → R, define D+Ld :=

γd+
Q ◦ dL.

• An implicit discrete Lagrangian system is given by(
Xk
d ,D

+Ld(q
0
k, q

1
k)
)
∈ Dd+

∆Q
,

where Xk
d = ((q0

k, p
0
k), (q0

k+1, p
0
k+1)) ∈ T ∗Q× T ∗Q.

• This gives the implicit discrete Euler–Lagrange equations,

p0
k+1 = D2Ld(q

0
k, q

1
k) ∈ ∆◦Q(q1

k), p0
k+D1Ld(q

0
k, q

1
k) ∈ ∆◦Q(q0

k),

q1
k = q0

k+1, (q0
k, q

0
k+1) ∈ ∆d

Q.
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(+)-Discrete Dirac Mechanics

� Implicit Discrete Hamiltonian Systems

• Given a discrete Hamiltonian Hd+ : Q × Q∗ → R, an implicit

discrete Hamiltonian system (Hd+,∆
d
Q, Xd) is,(

Xk
d , dHd+(q0

k, p
1
k)
)
∈ Dd+

∆Q
,

which gives the implicit discrete Hamilton’s equations,

p0
k −D1Hd+(q0

k, p
1
k) ∈ ∆◦Q(q0

k), q0
k+1 = D2Hd+(q0

k, p
1
k),

p1
k − p

0
k+1 ∈ ∆◦Q(q1

k), (q0
k, q

0
k+1) ∈ ∆d

Q,
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Conclusion

� Discrete Dirac Structures

•We have constructed a discrete analogue of a Dirac structure by
considering the geometry of generating functions of symplectic maps.

• Unifies geometric integrators for degenerate, interconnected, and
nonholonomic Lagrangian and Hamiltonian systems.

• Provides a characterization of the discrete geometric structure as-
sociated with Hamilton–Pontryagin integrators.

� Discrete Hamilton–Pontryagin principle

• Provides a unified discrete variational principle that recovers both
the discrete Hamilton’s principle, and the discrete Hamilton’s phase
space principle.

• Is sufficiently general to characterize all near to identity Dirac maps.
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Conclusion

� Current Work and Future Directions

• Extend the discrete Dirac approach to interconnected systems, and
develop modular and parallel implementations.

• Develop generalizations to Hamiltonian PDEs: discrete analogues
of multi-Dirac structures, and multi-Dirac mechanics.

• Derive the Dirac analogue of the Hamilton–Jacobi equation, with
nonholonomic Hamilton–Jacobi theory as a special case.

Simulations courtesy of Todd Murphey, Northwestern University.


