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MAIN TOPIC

TO INTRODUCE A FAMILY OF RUNGE KUTTA
METHODS OF ARBITRARILY HIGH ORDER WITH

ENERGY PRESERVING PROPERTIES

AND

TO HIGHLIGHT ITS RELATIONSHIP WITH
COLLOCATION METHODS
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DEFINITION OF THE PROBLEM

We consider the numerical integration of Hamiltonian systems

ẏ = J∇H(y), J =

(
0 I
−I 0

)
,

The vector state y is made up of:

y =

(
q
p

)
→ generalized coordinates
→ conjugate momenta

ASSUMPTION: the Hamiltonian function H(y) = H(p, q) is a
polynomial in the variables p and q.

AIM: To define one-step methods that conserve the Hamiltonian function:

H(yn+1) = H(yn) for all n and h > 0
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MOTIVATIONS (1/2)

Many interesting Hamiltonian systems arising from
different fields of study are defined by polynomial
Hamiltonian functions.

Example: Fermi-Pasta-Ulam Problem
This problem describes the interaction of 2m mass points linked with
alternating soft nonlinear and stiff linear springs, in a one-dimensional
lattice with fixed end points (q0 = q2m+1 = 0). The Hamiltonian
function is

H(p, q) =
1

2

mX
i=1

(p2
2i−1 + p2

2i ) +
ω2

4

mX
i=1

(q2i − q2i−1)
2 +

mX
i=0

(q2i+1 − q2i )
4.

In our experiments we chose the stiff parameter ω = 50.
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MOTOVATIONS (2/2)

It is well known that symplectic RK-methods only
conserve quadratic Hamiltonian functions:

H(y) =
1

2
yTCy

but, in general, they fail to yield conservation for higher
degree. So do symmetric methods.
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COUNTEREXAMPLES (1/2)

Energy function evaluated over the numerical solution
obtained by solving the quartic pendulum equation

H(p, q) =
1

2
p2 +

1

2
q2 − 1

24
q4.

by the Lobatto IIIA method of order four (left picture)
and Gauss method of order six (right picture).
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COUNTEREXAMPLES (2/2)

Even worse, the discrete energy function H(pn, qn) may
undergo a drift (even if the method is selected to be
symmetric). LobattoIIIB order 4, h = 1; y0 = [1, 0]

H(p, q) =
1

3
p3 − 1

2
p +

1

30
q6 +

1

4
q4 − 1

3
q3 +

1

6
.

E. Faou, E. Hairer and T.-L. Pham, Energy conservation with non-symplectic
methods: Examples and counter-examples, BIT 44, no. 4 (2004)
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THE LINE INTEGRAL: THE KEY TOOL

Given a path σ = c ∈ [0, 1] → R2m joining the points y0

and y1 in the phase space, we consider the line integral∫
y0→y1

∇H(y)dy ≡
∫ 1

0

σ̇(c)T ∇H(σ(c)) dc

Due to conservativeness of the vector field, such integral
is equal to H(y1)− H(y0), no matter how σ(c) is chosen.

The fundamental property we will consider is

σ(c) ≡ y(t0 + ch)
Exact solution

=⇒ H(y(t0 + h)) = H(t0)

which means Energy Conservation.
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AIM

To define a discrete counterpart of the line

integral and

to reproduce the energy conservation property

when the continuous theoretical solution

y(t0 + ch) is replaced by the numerical solution

obtained by a suitable one-step method

y1 = Φh(y0)
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SKETCH OF THE IDEA: quadratic Hamiltonian (1/2)

We consider one of the simplest RK methods: the
trapezoidal method:

yn+1 − yn =
1

2
J (∇H(yn) +∇H(yn+1))

Multiplication of both sides by (∇H(yn) +∇H(yn+1))
T

yields

(∇H(yn) +∇H(yn+1))
T (yn+1 − yn) = 0

CLAIM: For quadratic Hamiltonian functions this is
tantamount to the conservation law:

H(yn+1) = H(yn), for all times tn
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SKETCH OF THE IDEA: quadratic Hamiltonian (2/2)

PROOF: Consider the segment σ joining yn to yn+1

σ(t0 + ch) = (1− c)yn + cyn+1, whith c ∈ [0, 1].

and the line integral

H(yn+1)−H(yn) =

∫
yn→yn+1

∇H(y)dy =

∫ 1

0
σ̇(t0 + ch)T ∇H(σ(t0 + ch)) dc

=h(yn+1 − yn)
T

∫ 1

0
∇H(σ(t0 + ch)) dc

=
1

2
h(yn+1 − yn)

T (∇H(yn) +∇H(yn+1))

=0

∇H(y) being linear.
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How to generalize when deg H(y) = ν, for some ν ≥ 2?

Again, σ(t0 + ch) = (1− c)yn + cyn+1, whith c ∈ [0, 1]:

H(yn+1)−H(yn) =

∫
yn→yn+1

∇H(y)dy =

∫ 1

0
σ̇(t0 + ch)T ∇H(σ(t0 + ch)) dc

=h(yn+1 − yn)
T

∫ 1

0
∇H(σ(c))
degree ν − 1

dc

=h(yn+1 − yn)
T

k∑
i=1

bi∇H(Yi )

quadrature formula with
degree of precision≥ ν − 1

Yi = σ(t0 + cih), i = 1, . . . , k

c1, c2, . . . , ck distinct abscissae in [0, 1].
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Energy Preserving methods of order 2 (F.I.-B.Pace [2007])

yn+1 = yn + h
k∑

i=1

bi f (Yi),

Yi = (1− ci)yn + ciyn+1, i = 1, . . . , k

Yi are called silent stages since their presence does not
affect the nonlinearity of the resulting R-K method: they
are mono-implicit methods.

abscissae distribution Energy preserving when

Newton-Cotes distribution deg H ≤ k , k + 1

Lobatto distribution deg H ≤ 2k − 2

Gauss distribution deg H ≤ 2k
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A couple of examples (uniform distribution)

When k = 2 we obtain the trapezoidal method; for k = 3 and k = 5
we obtain respectively the methods:

yn+1 = yn +
h

6

(
f (yn) + 4f (

yn + yn+1

2
) + f (yn+1)

)
and

yn+1 = yn +
h

90

(
7f (yn) + 32f (

3yn + yn+1

4
) + 12f (

yn + yn+1

2
)

+32f (
yn + 3yn+1

4
) + 7f (yn+1)

)
When applied to y ′ = f (t), these become the Newton-Cotes

quadrature formulae of order 4 and 6 respectively.
On the other hand, when applied to general ODE problems their order
reduces to two.
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The Butcher tableau

The Butcher tableau associated with these methods is:

c1 c1b1 c1b2 . . . . . . c1bk

c2 c2b1 c2b2 . . . . . . c2bk
...

...
...

...
cs−1 cs−1b1 cs−1b2 . . . . . . cs−1bsk
cs b1 b2 . . . . . . bk

csb1 csb2 . . . . . . ckbk

=
c cbT

bT

It is easily seen that each method under consideration has
order two and is symmetric.
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NUMERICAL TEST: Fermi-Pasta-Ulam Problem

H(q, p) =
1

2

m∑
i=1

(p2
2i−1 + p2

2i ) +
ω2

4

m∑
i=1

(q2i − q2i−1)
2 +

m∑
i=0

(q2i+1 − q2i )
4.

We chose m = 3 (6 degrees of freedom) and ω = 50.

Stepsize h = 0.1
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NUMERICAL TEST: The pendulum equation

H(q, p) =
1

2
p2 + 1− cos q.

Parameters: interval [0, 1e3], h = 1, [q0, p0] = [π/2, 1/2]

Increasing the number of silent stages results in a significant
reduction of the error, independently of the choice of the stepsize h
=⇒ PRACTICAL ENERGY CONSERVATION.
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REMARK
H(y) a polynomial. If k is sufficiently large

y1 = y0 + h
k∑

i=1

biJ∇H(Yi ) ⇐⇒ y1 = y0 + h

∫ 1

0
J∇H((1− c)yn + cy1)dc

↓
E.P. RK of order 2

↓
Averaged Vector Field Method

• G.R.W. Quispel, D.I. McLaren. A new class of energy-preserving numerical

integration methods. J. Phys. A 41 (2008) 04526, 7.

• E. Celledoni, R.I.McLachlan, D. McLaren, B.Owren, G.R.W. Quispel,

W.M. Wright. Energy preserving Runge-Kutta methods. M2AN 43 (2009)

645–649.

EQUIVALENT METHODS: Let ν = deg(H(y). All the methods
that realize the above equivalency are “equivalent”, namely they
provide the very same numerical solution.
EXAMPLE: The trapezoidal method and the implicit midpoint
method are equivalent if applied to linear autonomous
Hamiltonian systems.
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EXTENSION OF COLLOCATION METHODS

HOW CAN THE PREVIOUS APPROACH

BE GENERALIZED IN ORDER TO GET

HIGHER ORDER ENERGY-PRESERVING

RUNGE-KUTTA METHODS?

[2008] - F.I., B. Pace. Conservative Block-Boundary Value Methods for the
Solution of Polynomial Hamiltonian Systems. AIP Conf. Proc. 1048 (2008)
888–891.

[2009] - F.I., D. Trigiante. High-order symmetric schemes for the energy
conservation of polynomial Hamiltonian problems. J. Numer. Anal. Ind. Appl.
Math. 4,1-2 (2009) 87–111.

[2009] - L. Brugnano, F.,I., D. Trigiante. Analysis of Hamiltonian Boundary Value
Methods (HBVMs) for the numerical solution of polynomial Hamiltonian
dynamical systems. 2009, Submitted, (arXiv:0909.5659).
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The ingredients

1 A set of abscissae 0 ≤ c1 < · · · < ck ≤ 1 and weights b1, . . . , bk

yielding a quadrature formula of suitable degree of precision d .

2 A polynomial σ(t) of degree s ≤ k , with σ(t0) = y0, defined for
t ∈ [t0, t0 + h] by means of the expansion

σ̇(t0+ch) =
s∑

j=1

γjPj(c) =⇒ Yi ≡ σ(t0+cih) = y0+h
s∑

j=1

γj

∫ ci

0
Pj(x) dx ,

where Pj(c) is the Legendre polynomial of degree j − 1 shifted
on [0, 1], and the (vector) coefficients {γj} are to be regarded as
unknown.

3 y1 = σ(t0 + h) will yield the approximation to y(t0 + h).
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High order Energy Preserving R-K methods

H(y1)− H(y0) =

∫ t0+h

t0

(σ̇(t))T∇H(σ(t))dt

= h
s∑

j=1

γT
j

∫ 1

0
Pj(c)∇H(σ(t0 + ch))dc

which vanishes by choosing, for j = 1, . . . , s,

γj = ηj

∫ 1

0
Pj(τ)J∇H(σ(t0 + ch))dc = ηj

k∑
`=1

b`Pj(c`)J∇H(σ(t0 + c`h)).

polynomial of degree ≤ νs − 1 provided d ≥ νs − 1

- ηj are suitable nonzero scaling factors that make the resulting
method consistent

ηj =

(∫ 1

0
P2

j (x)dx

)−1

, j = 1, . . . , s
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WE CAN FOLLOW TWO ROUTES

↙ ↘
RUNGE-KUTTA

FORMULATION

BLOCK-BVM

FORMULATION

Each formulation brings some advantages.

Block-BVMs are a subclass of R-K methods;
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RUNGE-KUTTA FORMULATION 1/2

Yi = y0 + h
s∑

j=1

ηj

∫ ci

0
Pj(x)dx

k∑
`=1

b`Pj(c`) f (Y`).

Define the matrices I,P ∈ Rk×s and Λ, Ω as

Iij =

∫ ci

0

Pj(x)dx , Pij = Pj(ci),
Λ = diag(η1, . . . , ηs),
Ω = diag(b1, . . . , bk)

We get the R-K method defined by the tableau

c1
...
ck

IΛPTΩ

b1 . . . bk

(∗)
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THEOREM

Assume that

Pj(c), j = 1, . . . , s, is the shifted Legendre polynomial of degree
j − 1, on the interval [0, 1];

the quadrature formula with abscissae c1 < · · · < ck and weights
b1, . . . , bk has degree of precision d ≥ 2s − 1.

Then the R-K method (*)

1 has order 2s for all k ≥ s;
2 is symmetric and precisely A-stable;
3 becomes the Gauss-Legendre method of order 2s, when k = s;
4 is energy preserving when applied to canonical polynomial

Hamiltonian systems with Hamiltonian function H(y) of degree
ν ≤ d+1

s
(if the ci are the Gauss abscissae then ν ≤ 2k

s
).
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LINK TO COLLOCATION METHODS 1/2

Consider a collocation method with k stages, defined by
the tableau

c1

...
ck

A

b1 . . . bk

A = (αij) ≡
�Z ci

0

`j(x)dx

�
, bj =

Z 1

0

`j(x)dx ,

`j(c) being the jth Lagrange polynomial of degree k − 1
defined on the set of abscissae {ci}. Assume that the
quadrature formula (ci , bi) has degree of prec. ≥ 2s − 1.
Let

Ω = diag(b1, . . . , bk),

P̂j(t), j = 1, . . . , s, the normalized shifted Legendre polynomial of
degree j − 1, on the interval [0, 1],

Ps = (P̂j(ci )) (k × s matrix)
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LINK TO COLLOCATION METHODS 2/2 ([2010])
The Energy Preserving R-K method (*) may be recast as

c1
...
ck

A ≡ A(P̂sP̂T
s Ω)

b1 . . . . . . bk

[2010] - L.Brugnano, F.I., D.Trigiante. The Lack of Continuity and the Role of
Infinite and Infnitesimal in Numerical Methods for ODEs: the Case of
Symplecticity, Applied Mathematics and Computation, (to appear)
(arXiv:1010.4538).

REMARK: Note that the Butcher array A has rank which cannot exceed s,
because it is defined by filtering the Butcher array A associated with a
standard collocation method by the rank s matrix PsPT

s Ω. As a
consequence, k − s of the internal stages, that we called silent stages, may
be cast as linear combinations of the remaining s fundamental stages and
the nonlinear system to be solved at each step of the integration procedure
has actually block-dimension s rather than k. This is better visualized by
recasting the method in block-BVM form (next slide).
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ALTERNATIVE FORMULATION

The first approach used to devise the new methods has led to their
formulation in terms of block-Boundary Value Methods rather than
Runge-Kutta methods. Consequently, they have been named
Hamiltonian Boundary Value Methods: HBVM(k ,s).
The nonlinear system takes the form(
−e Is 0s×r

−a0 −A1 Ir

)
⊗ I2m Ŷ = h

(
b0 B1 B2

0 0r×s 0r×r

)
⊗ J ∇H(Ŷ ).

where

Ŷ =

{
[Y T

1 , . . . , Y T
k ]T , if Y1 = y0,

[Y T
1 , . . . , Y T

k ]T , if Y1 = y0,

REMARK: The HBVM formulation is more appropriate for
implementation, since it uncouples the linear and nonlinear part of the
system.
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Infinity HBVMs

These are the limit as k →∞ of HBVM(k ,s)

HBVM(∞, s) = lim
k→∞

HBVM(k , s).

This is tantamount to retain the integrals in place of the quadrature
formulae:

Yi = y0+h

∫ 1

0

(
s∑

j=1

ηjaijPj(τ)

)
J∇H(σ(t0+τh))dτ, i = 1, . . . , s.

The limit formula with {Pj} the Lagrange basis was first devised by
E. Hairer.
[2010] - E. Hairer, Energy-preserving variant of collocation methods, J. Numer.
Anal. Ind. Appl. Math., 5,1-2 (2010).

[2010] - L. Brugnano, F.I., D. Trigiante, Hamiltonian Boundary Value Methods
(Energy Preserving Discrete Line Integral Methods). Jour. of Numer. Anal.,
Industr. and Appl. Math. 5,1-2 (2010) 17–37. (arXiv:0910.3621)
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Local Fourier expansion of the problem 1/2 [2010]

y ′(t) = f (y(t)), t ∈ [t0, t0 + h], y(t0) = y0 ∈ Rm,

Let us consider an orthonormal basis {Pj}j≥1, for example the
Legendre polynomials on the interval [0,1]:∫ 1

0

Pi(τ)Pj(τ)dτ = δij , deg(Pj) = j − 1.

By expanding the right-hand side of the equation, we obtain:

y ′(t0 + ch) =
∞∑
j=1

γj(y ; h)Pj(c), c ∈ [0, 1],

with the Fourier coefficients given by

γj(y ; h) =

∫ 1

0

Pj(τ)f (y(t0 + τh))dτ.
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Local Fourier expansion of the problem 2/2

By truncating the expansion after k terms, we obtain the problem

σ′(t0 + ch) =
k∑

j=1

γj(σ; h)Pj(c), c ∈ [0, 1],

with

γj(σ; h) =

∫ 1

0

Pj(τ)f (σ(t0 + τh))dτ.

Its solution, formally given by

σ(t0 + ch) = y0 + h
r−1∑
j=0

γj(σ; h)

∫ c

0

Pj(τ)dτ, c ∈ [0, 1],

is a polynomial of degree r .
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POLYNOMIAL EXAMPLE

H(p, q) =
1

3
p3 − 1

2
p +

1

30
q6 +

1

4
q4 − 1

3
q3 +

1

6
.

E. Faou, E. Hairer and T.-L. Pham, Energy conservation with non-symplectic

methods: Examples and counter-examples, BIT 44, no. 4 (2004)

- HBVM of order 4 and degree of precision 6, h = 1, (q0, p0) = (0, 1).

- LEFT Picture: (p, q)-plane.
- RIGHT Picture: Energy function H(yn)
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NON-POLYNOMIAL EXAMPLE 1/3
The Hamitonian function

H(x , y , z , ẋ , ẏ , ż) =

1

2m

[(
ẋ − α

x

%2

)2

+

(
ẏ − α

y

%2

)2

+ (ż + α log(%))2

]
with % =

√
x2 + y 2, α = e B0, m is the particle mass, e is its charge,

and B0 is the magnetic field intensity, defines the motion of a charged
particle in a magnetic field under Biot-Savart potential.

We have integrated with the values

m = 1, e = −1, B0 = 1,

with starting point

x = 0.5, y = 10, z = 0, ẋ = −0.1, ẏ = −0.3, ż = 0.
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NON-POLYNOMIAL EXAMPLE 2/3
Solution curve in the 3D space.
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NON-POLYNOMIAL EXAMPLE 3/3
Error in the energy function H(yn)− H(y0) associated with
HBVM(6,2) (order 4, exact for deg(H) ≤ 6 (Gaussian distribution).)
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KEPLER PROBLEM WITH NON-CONSTANT STEPSIZE

Hamiltonian:

H(q, p) =
1

2

(
p2

1 + p2
2

)
− 1√

q2
1 + q2

2

.

Initial condition:

q1 = 1− e, q2 = 0, p1 = 0, p2 =
√

(1 + e)/(1− e).

Periodic elliptic orbit:

with eccentricity e and period 2π.

Costant stepsize is not efficient, when the eccentricity is close to 1:

a variable mesh selection would be more appropriate.
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Standard mesh selection
Let p be the order of the method, then:

hnew = 0.7 · hn

(
Tol

errn

)1/(p+1)

,

where errn is a suitable estimate of the local error.
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Kepler problem, e = 0.99

Sixth order methods:

GAUSS6: 3-stages Gauss-Legendre method (symplectic);

HBVM(12,3): practically energy-conserving, in such a case.

Time interval:

1000 periods.

Tolerance:

10−10.
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Hamiltonian error
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Solution error
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What is the gain? By using the tollerance Tol = 10−10,

the variable stepsize implementation

of HBVM(12,3) requires 153 steps per period.

To obtain the same accuracy,

the constant stepsize implementation

of GAUSS6 would require ≈ 2 · 105 steps per period!

(Oberwolfach 2011) Runge-Kutta Energy preserving methods 40 / 41



http://www.math.unifi.it/∼brugnano/HBVM/
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