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MAIN TOPIC

TO INTRODUCE A FAMILY OF RUNGE KUTTA
METHODS OF ARBITRARILY HIGH ORDER WITH
ENERGY PRESERVING PROPERTIES

AND

TO HIGHLIGHT ITS RELATIONSHIP WITH
COLLOCATION METHODS
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DEFINITION OF THE PROBLEM

We consider the numerical integration of Hamiltonian systems

. 0o |/
N GO S

The vector state y is made up of:

([ q — generalized coordinates
y= p — conjugate momenta

ASSUMPTION: the Hamiltonian function H(y) = H(p,q) is a
polynomial in the variables p and q.

AIM: To define one-step methods that conserve the Hamiltonian function:

H(ynt+1) = H(yn) forall nand h >0
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MOTIVATIONS (1/2)

o Many interesting Hamiltonian systems arising from
different fields of study are defined by polynomial
Hamiltonian functions.

Example: Fermi-Pasta-Ulam Problem

This problem describes the interaction of 2m mass points linked with
alternating soft nonlinear and stiff linear springs, in a one-dimensional

lattice with fixed end points (go = gam+1 = 0). The Hamiltonian
function is

2 m

1 ul
H(p,q) = 2 Z Pi-1+ P37) +2 Z(%‘ — qic1)’ + Z(q2i+1 — qi)".

i=1 i=0

In our experiments we chose the stiff parameter w = 50.
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MOTOVATIONS (2/2)

It is well known that symplectic RK-methods only
conserve quadratic Hamiltonian functions:

1
H(y) = inCy

but, in general, they fail to yield conservation for higher
degree. So do symmetric methods.
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COUNTEREXAMPLES (1/2)
\ |
i

Energy function evaluated over the numerical solution
obtained by solving the quartic pendulum equation

1 1 1
H(p,q) = =p* + -q* — —q*
(p,q) = 5P" + 54" = 5,4
by the Lobatto IIIA method of order four (left picture)

and Gauss method of order six (right picture).
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COUNTEREXAMPLES (2/2)
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Even worse, the discrete energy function H(p,, g,) may

undergo a drift (even if the method is selected to be

symmetric). LobattollIB order 4, h = 1; y0 = [1, 0]
1, 1 14 1, 1, 1

H S — _ -
(p, q) 3P p+30q+q 39 T e

@ E. Faou, E. Hairer and T.-L. Pham, Energy conservation with non-symplectic
methods: Examples and counter-examples, BIT 44, no. 4 (2004)
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THE LINE INTEGRAL: THE KEY TOOL

Given a path o = ¢ € [0, 1] — R?™ joining the points yq
and y; in the phase space, we consider the line integral

VH(y)dyE/O o(c)" VH(o(c)) de

Yo—n

Due to conservativeness of the vector field, such integral
is equal to H(y1) — H(yo), no matter how o(c) is chosen.

The fundamental property we will consider is

o(c) = y(to + ch) = H(y(to + h)) = H(to)

Exact solution

which means Energy Conservation.
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AlM

o To define a discrete counterpart of the line
integral and

o to reproduce the energy conservation property
when the continuous theoretical solution
y(to + ch) is replaced by the numerical solution
obtained by a suitable one-step method

y1 = ®u(w0)

9/41
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SKETCH OF THE IDEA: quadratic Hamiltonian (1/2)

We consider one of the simplest RK methods: the
trapezoidal method:

1
Yn+1 — Yn = §J (VH()/n) + VH(Yn+1))

Multiplication of both sides by (VH(y,) + VH(yns1))"
yields

(VH()/n) + vH()/n—&-l))T (}/n—i—l - )/n) =0

CLAIM: For quadratic Hamiltonian functions this is
tantamount to the conservation law:

H(yn1) = H(yn), for all times t,
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SKETCH OF THE IDEA: quadratic Hamiltonian (2/2)
PROOF: Consider the segment o joining y, to y,.1

o(to + ch) = (1 — ¢)yn + cyns1, whith c € [0,1].

and the line integral

1
H(yms1)—H(yn) /VH(y)dy / (to + ch)T VH(o(to + ch)) de

Yn—Yn+1

— h(ymer — y)T / VH(o(to + ch)) dc

= 30 = )T (VHO) + TH(m12))
=0

VH(y) being linear.
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How to generalize when deg H(y) = v, for some v > 27

Again, o(ty+ ch) = (1 — ¢)y, + ¢Ynr1, Whith ¢ € [0, 1]:
1
Hyme1)—H(yn) = | VH(y)dy = /od(to + ch)T VH(o(to + ch)) de

Yn—Yn+1

1
=h(yns1 —ya)" | VH(o(c)) de
0 degree v —1

k
=h(yns1—ya)" D bVH(Y;)
i=1

quadrature formula with
degree of precision> v — 1

° Y,':O'(to-i-C,'h), i=1,....k

e 1,0, ..., Ck distinct abscissae in [0, 1].
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Energy Preserving methods of order 2 (F.l.-B.Pace [2007])

k
Yar1 = Yot hY bif(Y5),
i=1
Yi = (1=G)yn+Ciynr1, i=1,...,k
Y; are called silent stages since their presence does not
affect the nonlinearity of the resulting R-K method: they
are mono-implicit methods.

abscissae distribution Energy preserving when
Newton-Cotes distribution degH < k, k+1
Lobatto distribution degH <2k —2
Gauss distribution deg H < 2k
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A couple of examples (uniform distribution)

When k = 2 we obtain the trapezoidal method; for k =3 and k =5
we obtain respectively the methods:

h n+ Yn
Yor1=VYn T+ 6 (f(Yn) + 4’((%) + f()’n+1))

and

h 3Yn + Yn Y,

n + 3 n
132 2 4 7r(y,.) )

When applied to y’ = f(t), these become the Newton-Cotes
quadrature formulae of order 4 and 6 respectively.

On the other hand, when applied to general ODE problems their order
reduces to two.
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The Butcher tableau

The Butcher tableau associated with these methods is:

(o] C1b1 C1b2 oo e Clbk
(@) C2b1 C2b2 e e Cgbk
: : _cleb’
Cs—1 Csflbl Csflbg e e Csflbsk N bT
Cs b1 b2 e e bk
Csbl C5b2 e e Ckbk

It is easily seen that each method under consideration has
order two and is symmetric.
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NUMERICAL TEST: Fermi-Pasta-Ulam Problem

m

1
) = 3 %ifl %i
H(a.p) =75 ) (P21 +p

i=1

We chose m = 3 (6 degrees of freedom) and w = 50.

2 m
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Numerical Hamiltonian function H(y")

Stepsize h = 0.1
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NUMERICAL TEST: The pendulum equation

Parameters: interval [0, 1e3],

1
H(q,p) = 5p*+1—cosq.

2
h=1, [q0,po] =[r/2,1/2]

10 : ! ! : ! . . T
s=2 (trapezoidal method)
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Increasing the number of silent stages results in a significant

reduction of the error, independently of the choice of the stepsize h
— PRACTICAL ENERGY CONSERVATION.
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REMARK
e H(y) a polynomial. If k is sufficiently large

k

1
i=yo+hY bJVH(Y:) <= y1 =y + h/ JVH((1 = c)yn + cy1)dc
i=1 0

|
E.P. RK of order 2 Averaged Vector Field Method

e G.R.W. Quispel, D.I. McLaren. A new class of energy-preserving numerical
integration methods. J. Phys. A 41 (2008) 04526, 7.

e E. Celledoni, R.I. McLachlan, D. McLaren, B. Owren, G.R.W. Quispel,
W.M. Wright. Energy preserving Runge-Kutta methods. M2AN 43 (2009)
645—-649.

EQUIVALENT METHODS: Let v = deg(H(y). All the methods
that realize the above equivalency are “equivalent”, namely they
provide the very same numerical solution.

EXAMPLE: The trapezoidal method and the implicit midpoint
method are equivalent if applied to linear autonomous
Hamiltonian systems.
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EXTENSION OF COLLOCATION METHODS

HOW CAN THE PREVIOUS APPROACH

BE GENERALIZED IN ORDER TO GET

HIGHER ORDER ENERGY-PRESERVING
RUNGE-KUTTA METHODS?

[2008] - F.I., B. Pace. Conservative Block-Boundary Value Methods for the
Solution of Polynomial Hamiltonian Systems. AIP Conf. Proc. 1048 (2008)
888-891.

[2009] - F.I., D. Trigiante. High-order symmetric schemes for the energy
conservation of polynomial Hamiltonian problems. J. Numer. Anal. Ind. Appl.
Math. 4,1-2 (2009) 87-111.

[2009] - L. Brugnano, F.,I., D. Trigiante. Analysis of Hamiltonian Boundary Value
Methods (HBVMs) for the numerical solution of polynomial Hamiltonian
dynamical systems. 2009, Submitted, (arXiv:0909.5659).
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The ingredients
O A set of abscissae 0 < ¢; < --- < ¢, < 1 and weights by, ..., by
yielding a quadrature formula of suitable degree of precision d.

@ A polynomial o(t) of degree s < k, with o(ty) = yo, defined for
t € [to, to + h] by means of the expansion

o(to+ch) = Z’YJ'PJ'(C) — Yi =o(to+cih) = yo+hZ'yj/ Pi(x) dx,
j=1 j=1 70

where Pj(c) is the Legendre polynomial of degree j — 1 shifted
on [0,1], and the (vector) coefficients {~;} are to be regarded as
unknown.

© y1 = o(to + h) will yield the approximation to y(ty + h).
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High order Energy Preserving R-K methods

to+h
Hivt) — Hyo) = / (6(£) TV H(o(1))dt
_ hZ’yJ / ()VH(o(to + ch))dc
which vanishes by choosing, for j =1,... s,

1
v = nj/ P;(1)JVH(o(ty + ch))dc = njz byPj(ct) IV H(a(to + coh)).
0polynomlal of degree < vs—1 =1 provided d > vs — 1

- 7); are suitable nonzero scaling factors that make the resulting
method consistent

1 -1
nj=</0 Pf(x)dx) . j=1...,s
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WE CAN FOLLOW TWO ROUTES

/ N

RUNGE-KUTTA BLOCK-BVM
FORMULATION FORMULATION

o Each formulation brings some advantages.

o Block-BVMs are a subclass of R-K methods:
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RUNGE-KUTTA FORMULATION 1/2

s G k
Yi=yot b ny /0 Pi(x)dx S biPi(cr) F(Y2).
j=1 =1

Define the matrices Z, P € R*** and A, Q as

¢ A =dia yen
T; = /0 Pi(x)dx, Py = Pi(c), Q= diagg((le, .

We get the R-K method defined by the tableau

&]
INPTQ
(%)
Ck
by ... b
(Oberwolfach 2011) Runge-Kutta Energy preserving methods
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THEOREM

Assume that
o Pi(c), j=1,...,s, is the shifted Legendre polynomial of degree
Jj—1,0n the mterval [0, 1];
e the quadrature formula with abscissae ¢; < --- < ¢, and weights
by, ..., by has degree of precision d > 2s — 1.
Then the R-K method (*)

@ has order 2s for all k > s;

@ is symmetric and precisely A-stable;

© becomes the Gauss-Legendre method of order 2s, when k = s;
(%]

is energy preserving when applied to canonical polynomial
Hamiltonian systems with Hamiltonian function H(y) of degree
v < % (if the ¢; are the Gauss abscissae then v < %)
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LINK TO COLLOCATION METHODS 1/2

Consider a collocation method with k stages, defined by
the tableau

1

. A ¢ 1

: A== ([ aeaa) . b= [ heoax

Ck 0 0
2

¢j(c) being the jth Lagrange polynomial of degree k — 1
defined on the set of abscissae {¢;}. Assume that the

quadrature formula (c;, b;) has degree of prec. > 2s — 1.
Let

o Q =diag(bs,...,by),

° /I5J(t) Jj=1,...,s, the normalized shifted Legendre polynomial of
degree j — 1, on the interval [0, 1],

o P = (f’J(c,)) (k x s matrix)
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LINK TO COLLOCATION METHODS 2/2 ([2010])
The Energy Preserving R-K method (*) may be recast as

a

Ck

[2010] - L.Brugnano, F.l., D.Trigiante. The Lack of Continuity and the Role of

Infinite and Infnitesimal in Numerical Methods for ODEs: the Case of
Symplecticity, Applied Mathematics and Computation, (to appear)

(arXiv:1010.4538).

REMARK: Note that the Butcher array A has rank which cannot exceed s,
because it is defined by filtering the Butcher array A associated with a
standard collocation method by the rank s matrix PsPJ Q. As a
consequence, k — s of the internal stages, that we called silent stages, may
be cast as linear combinations of the remaining s fundamental stages and
the nonlinear system to be solved at each step of the integration procedure
has actually block-dimension s rather than k. This is better visualized by
recasting the method in block-BVM form (next slide).
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ALTERNATIVE FORMULATION

The first approach used to devise the new methods has led to their
formulation in terms of block-Boundary Value Methods rather than
Runge-Kutta methods. Consequently, they have been named

Hamiltonian Boundary Value Methods: HBVM(k,s).
The nonlinear system takes the form

—€ Is 0s><r v _ bO Bl B2 v
(_ao iy >®lsz—h< o o Ofﬂ)@JVH(Y).
where

?_ [YlT,...,YkT]T, if Yl = Yo,
[YlT,...,YkT]T, if Yl = Yo,

REMARK: The HBVM formulation is more appropriate for

implementation, since it uncouples the linear and nonlinear part of the
system.
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Infinity HBVMs
These are the limit as k — oo of HBVM(k,s)

HBVM(o0,s) = lim HBVM(k, s).

This is tantamount to retain the integrals in place of the quadrature
formulae:

1 S
Vimyoth [ (S wasPr) | VRGP Lis
0 j=1

The limit formula with {P;} the Lagrange basis was first devised by
E. Hairer.

[2010] - E. Hairer, Energy-preserving variant of collocation methods, J. Numer.
Anal. Ind. Appl. Math., 5,1-2 (2010).

[2010] - L. Brugnano, F.I., D. Trigiante, Hamiltonian Boundary Value Methods
(Energy Preserving Discrete Line Integral Methods). Jour. of Numer. Anal.,
Industr. and Appl. Math. 5,1-2 (2010) 17-37. (arXiv:0910.3621)
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Local Fourier expansion of the problem 1/2 [2010]

y'(t) = f(y(t)), t € [to, to + A, y(to) = yo € R7,

Let us consider an orthonormal basis {P;};~1, for example the
Legendre polynomials on the interval [0,1]:

1
/ P(r)P(r)dr = 65,  deg(P) —j—1.
0
By expanding the right-hand side of the equation, we obtain:
y'(to + ¢ch) = nyjyh ), c €[0,1],

with the Fourier coeff|C|ents given by

(i) = / Pi(r)F (v (to + Th))dr.
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Local Fourier expansion of the problem 2/2

By truncating the expansion after k terms, we obtain the problem

o'(to+ch) = S (o mPc).  celo1l.

j=1
with .
vi(o; h) = / Pi(1)f(o(to + 7h))dr.
0
Its solution, formally given by

r—1

o(to+ch) = yo+ hZ’yj(a; h) /OC P;(T)dr, c e 0,1],

j=0

is a polynomial of degree r.
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POLYNOMIAL EXAMPLE

1, 1 1 1, 1, 1
H(p,q)=§p3—2p+%q +29" 3q3+6-

E. Faou, E. Hairer and T.-L. Pham, Energy conservation with non-symplectic
methods: Examples and counter-examples, BIT 44, no. 4 (2004)

15 18.8127
| ot
05 | 18.8127
0 18.8127
05 — 18.8127
b3 04 06 08 i 12 1881275 5 10 15 20

- HBVM of order 4 and degree of precision 6, h = 1, (qo, po) = (0, 1).

- LEFT Picture: (p, g)-plane.
- RIGHT Picture: Energy function H(y,)
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NON-POLYNOMIAL EXAMPLE 1/3

The Hamitonian function

H(X7y7zﬂ).(7.)./72) =

1 <>‘<—a§)2+ <y_a§)2+(z+alog(9))2]

2m
with o = \/x? + y2, a = e By, m is the particle mass, e is its charge,
and By is the magnetic field intensity, defines the motion of a charged
particle in a magnetic field under Biot-Savart potential.

We have integrated with the values
m=1, e=—1, By =1,
with starting point

x=05 y=10, z=0, x=-01, y=-03 2=0.

(Oberwolfach 2011) Runge-Kutta Energy preserving methods 32 /41



NON-POLYNOMIAL EXAMPLE 2/3

Solution curve in the 3D space.
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NON-POLYNOMIAL EXAMPLE 3/3

Error in the energy function H(y,) — H(yo) associated with
HBVM(6,2) (order 4, exact for deg(H) < 6 (Gaussian distribution).)

x107"°

3

1 L L L L L L L L
o} 200 400 600 800 1000 1200 1400 1600 1800 2000
t
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KEPLER PROBLEM WITH NON-CONSTANT STEPSIZE

Hamiltonian:

N —

H(q,p) =

(b2 -+ P3) — —
Y Vit &

Initial condition:

=l-e =0, p=0 p=y(1+e)/(l-e) |

Periodic elliptic orbit:

with eccentricity e and period 27.

Costant stepsize is not efficient, when the eccentricity is close to 1:

a variable mesh selection would be more appropriate.
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Standard mesh selection
Let p be the order of the method, then:

)

1/(p+1)
b =07y 2

err,

where err, is a suitable estimate of the local error.
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Kepler problem, e = 0.99

Sixth order methods:
e GAUSS6: 3-stages Gauss-Legendre method (symplectic);

e HBVM(12,3): practically energy-conserving, in such a case.

Time interval:
1000 periods.

Tolerance:
10—10
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Hamiltonian error

HAMILTONIAN ERRCR

107 . T .
R 1
107
GAUSS6
107k y
TD_E 3 _;
m“ci ‘
10k 1
HBVM(12,3)
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Solution error
10° T .

GAUSS6

[=]
Ty

SOLUTICN ERROR
3

HBVM(12,3)
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1071 -
10 . :
10° 10" 10° 10
PERIODS
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What is the gain? By using the tollerance To/ = 10710,

the variable stepsize implementation
of HBVM(12,3) requires 153 steps per period.

To obtain the same accuracy,

the constant stepsize implementation

of GAUSS6 would require ~ 2 - 10° steps per period!
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http://www.math.unifi.it/~brugnano/HBVM/

Hamiltonian Boundary Value Methods
(HBVMs)

Energy Preserving Discrete Line Integral Methods

Hamiltonian BVMs (HBVMs) constitute a class of energy-preserving methods for the numerical solution of canonical Hamiltonian systems,
i.e., problems in the form:

§=JVH(y),  ylto) =1y € B,

where J is a constant skew-symmetric matrix, and H(_}y is the Hamiltonian function. Such methods are able to preserve, in the numerical
solution, the value of the Hamiltonian function, as it happens for the continuous one. Hereafter, are the main facts about HBVMs:

Basic Facts about HBVMs

Some Numerical Tests

Infinity HBVMs

Isospectral Property of HBVMs and their connections with RK collocation methods
Blended HBVMSs

Notes and References (downloadable)

Matlab Codes <= (new)

HBVMs Test Gallery

Contacts

Recent developments <= (updated September 7, 2010)

R

—
=
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