◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Long-time analysis of Hamiltonian partial differential equations and their discretizations

Ludwig Gauckler – Universität Tübingen

gauckler@na.uni-tuebingen.de

March 2011

Oberwolfach Workshop "Geometric Numerical Integration"

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A linear Schrödinger equation

Free Schrödinger equation

$$i \frac{\partial}{\partial t} \psi = -\Delta \psi, \quad \psi = \psi(\mathbf{x}, t),$$

 $x\in\mathbb{T}=\mathbb{R}/(2\pi\mathbb{Z})$ (periodic b. c.)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A linear Schrödinger equation

Free Schrödinger equation

$$egin{aligned} &irac{\partial}{\partial t}\psi = -\Delta\psi, \ \ \psi = \psi(x,t) = \sum_{j\in\mathbb{Z}}\xi_j(t)e^{ijx}, \ &x\in\mathbb{T}=\mathbb{R}/(2\pi\mathbb{Z}) \end{aligned}$$
 (periodic b. c.)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A linear Schrödinger equation

Free Schrödinger equation

$$egin{aligned} &irac{\partial}{\partial t}\psi = -\Delta\psi, \ \ \psi = \psi(x,t) = \sum_{j\in\mathbb{Z}}\xi_j(t)e^{ijx}, \ &x\in\mathbb{T}=\mathbb{R}/(2\pi\mathbb{Z}) \end{aligned}$$
 (periodic b. c.)

The same equation in terms of the Fourier coefficients

$$i\frac{d}{dt}\xi_j(t) = j^2\xi_j(t) \qquad (j \in \mathbb{Z})$$

A linear Schrödinger equation

Free Schrödinger equation

$$egin{aligned} &irac{\partial}{\partial t}\psi = -\Delta\psi, \ \ \psi = \psi(x,t) = \sum_{j\in\mathbb{Z}}\xi_j(t)e^{ijx}, \ &x\in\mathbb{T}=\mathbb{R}/(2\pi\mathbb{Z}) \end{aligned}$$
 (periodic b. c.)

The same equation in terms of the Fourier coefficients

$$i\frac{d}{dt}\xi_j(t) = j^2\xi_j(t) = \frac{\partial H}{\partial \eta_j}(\xi(t), \overline{\xi(t)}) \qquad (j \in \mathbb{Z})$$

with $\xi = (\xi_j)_{j \in \mathbb{Z}}$ and the Hamiltonian function

$$H(\xi,\eta)=\sum_{j\in\mathbb{Z}}j^2\xi_j\eta_j$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

A nonlinear Schrödinger equation

Cubic nonlinear Schrödinger equation

$$egin{aligned} &irac{\partial}{\partial t}\psi = -\Delta\psi + |\psi|^2\psi, \ \ \psi = \psi(x,t) = \sum_{j\in\mathbb{Z}}\xi_j(t)e^{ijx}, \ &x\in\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z}) \end{aligned}$$
 (periodic b. c.)

A nonlinear Schrödinger equation

Cubic nonlinear Schrödinger equation

$$egin{aligned} &irac{\partial}{\partial t}\psi = -\Delta\psi + |\psi|^2\psi, \ \ \psi = \psi(x,t) = \sum_{j\in\mathbb{Z}}\xi_j(t)e^{ijx}, \ &x\in\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z}) \end{aligned}$$
 (periodic b. c.)

The same equation in terms of the Fourier coefficients

$$i\frac{d}{dt}\xi_j(t) = j^2\xi_j(t) + \sum_{k_1+k_2-\ell_1=j}\xi_{k_1}(t)\xi_{k_2}(t)\overline{\xi_{\ell_1}(t)} = \frac{\partial H}{\partial \eta_j}(\xi(t),\overline{\xi(t)})$$

with $\xi = (\xi_j)_{j \in \mathbb{Z}}$ and the Hamiltonian function

$$H(\xi,\eta) = \sum_{j \in \mathbb{Z}} j^2 \xi_j \eta_j + \frac{1}{2} \sum_{k_1 + k_2 - \ell_1 - \ell_2 = 0} \xi_{k_1} \xi_{k_2} \eta_{\ell_1} \eta_{\ell_2}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Hamiltonian differential equations

A Hamiltonian differential equation ...

... is an equation of the form

$$i\frac{d}{dt}\xi_j(t) = \frac{\partial H}{\partial \eta_j}(\xi(t),\overline{\xi(t)})$$
 $(j \in \mathcal{N})$

- $\xi = (\xi_j)_{j \in \mathcal{N}} \subseteq \mathbb{C}$ with a set of indices $\mathcal{N} \subseteq \mathbb{Z}^d$
- ▶ Hamiltonian function $H : U \times U \to \mathbb{C}$ defined on open subset of $l_s^2 \times l_s^2$ with

$$I_{\boldsymbol{s}}^{2} = \Big\{ \xi = (\xi_{j})_{j \in \mathcal{N}} : \|\xi\|_{\boldsymbol{s}} = \Big(\sum_{j \in \mathcal{N}} |j|^{2\boldsymbol{s}} |\xi_{j}|^{2} \Big)^{\frac{1}{2}} < \infty \Big\},$$

where $|j|^2 = \max(1, j_1^2 + \dots + j_d^2)$

Hamiltonian differential equations

With real variables

$$\xi_j = \frac{p_j + iq_j}{\sqrt{2}}$$

and Hamiltonian function

$$\widetilde{H}(\boldsymbol{q},\boldsymbol{p})=H(\xi,\overline{\xi})$$

we get

$$\frac{d}{dt}q_j(t) = \frac{\partial \widetilde{H}}{\partial p_j}(q(t), p(t))$$
$$\frac{d}{dt}p_j(t) = -\frac{\partial \widetilde{H}}{\partial q_j}(q(t), p(t))$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conserved quantities I

Conservation of energy

exact conservation of energy

 $H(\xi,\overline{\xi})$

along solutions of Hamiltonian differential equations

Known: Long-time near-conservation of energy along symplectic discretizations of Hamiltonian ODEs Question: Discretizations of Hamiltonian PDEs?

・ロン ・聞 と ・ ヨ と ・ ヨ と

3

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

= 900

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Conserved quantities II

Conservation of actions

exact conservation of actions

$$I_j(\xi,\overline{\xi}) = |\xi_j|^2$$
 $(j \in \mathcal{N})$

(only) along solutions of linear Hamiltonian differential equations

$$i\frac{d}{dt}\xi_j(t) = \frac{\partial H}{\partial \eta_j}(\xi(t), \overline{\xi(t)}) = \omega_j\xi_j(t)$$

with real frequencies ω_j and $H(\xi, \eta) = \sum_{j \in \mathcal{N}} \omega_j \xi_j \eta_j$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conserved quantities II

Conservation of actions

exact conservation of actions

$$I_j(\xi,\overline{\xi}) = |\xi_j|^2$$
 $(j \in \mathcal{N})$

(only) along solutions of linear Hamiltonian differential equations

$$i\frac{d}{dt}\xi_j(t) = \frac{\partial H}{\partial \eta_j}(\xi(t), \overline{\xi(t)}) = \omega_j\xi_j(t)$$

with real frequencies ω_j and $H(\xi, \eta) = \sum_{j \in \mathcal{N}} \omega_j \xi_j \eta_j$

Known: Long-time near-conservation of actions along weakly nonlinear Hamiltonian ODEs (perturbation theory)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conserved quantities II

Conservation of actions

exact conservation of actions

$$I_j(\xi,\overline{\xi}) = |\xi_j|^2$$
 $(j \in \mathcal{N})$

(only) along solutions of linear Hamiltonian differential equations

$$i\frac{d}{dt}\xi_j(t) = \frac{\partial H}{\partial \eta_j}(\xi(t), \overline{\xi(t)}) = \omega_j\xi_j(t)$$

with real frequencies ω_j and $H(\xi, \eta) = \sum_{j \in \mathcal{N}} \omega_j \xi_j \eta_j$

Known: Long-time near-conservation of actions along weakly nonlinear Hamiltonian ODEs (perturbation theory) Question: Hamiltonian PDEs?

(日) (日) (日) (日) (日) (日) (日)

Conserved quantities II

Conservation of actions

exact conservation of actions

$$I_j(\xi,\overline{\xi}) = |\xi_j|^2$$
 $(j \in \mathcal{N})$

(only) along solutions of linear Hamiltonian differential equations

$$i\frac{d}{dt}\xi_j(t) = \frac{\partial H}{\partial \eta_j}(\xi(t), \overline{\xi(t)}) = \omega_j\xi_j(t)$$

with real frequencies ω_j and $H(\xi, \eta) = \sum_{j \in \mathcal{N}} \omega_j \xi_j \eta_j$

Known: Long-time near-conservation of actions along weakly nonlinear Hamiltonian ODEs (perturbation theory)

Question: Hamiltonian PDEs?

Question: discretizations of Hamiltonian PDEs?

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

▲□▶▲@▶▲目▶▲目▶ 目 のへの

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Weakly nonlinear Hamiltonian PDEs

Nonlinear perturbation of linear Hamiltonian PDE

$$H(\xi,\eta) = \sum_{j\in\mathcal{N}} \omega_j \xi_j \eta_j + P(\xi,\eta)$$

with P (at least) cubic

$$i \frac{d}{dt} \xi_j(t) = \omega_j \xi_j(t) + \frac{\partial P}{\partial \eta_j}(\xi(t), \overline{\xi(t)})$$

Nonlinear perturbation of linear Hamiltonian PDE

$$H(\xi,\eta) = \sum_{j\in\mathcal{N}} \omega_j \xi_j \eta_j + P(\xi,\eta)$$

with P (at least) cubic

$$i \frac{d}{dt} \xi_j(t) = \omega_j \xi_j(t) + \frac{\partial P}{\partial \eta_j}(\xi(t), \overline{\xi(t)})$$

Nonlinear effects are small for small initial values

$$\|\xi(0)\|_{s}=\Bigl(\displaystyle{\sum_{j\in\mathcal{N}}}|j|^{2s}|\xi_{j}(0)|^{2}\Bigr)^{rac{1}{2}}\leqarepsilon$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Nonlinear perturbation of linear Hamiltonian PDE

$$H(\xi,\eta) = \sum_{j\in\mathcal{N}} \omega_j \xi_j \eta_j + P(\xi,\eta)$$

with P (at least) cubic

$$i\varepsilon^{-1}\frac{d}{dt}\xi_j(t) = \omega_j\varepsilon^{-1}\xi_j(t) + \varepsilon^{-1}\frac{\partial P}{\partial \eta_j}(\xi(t),\overline{\xi(t)})$$

Nonlinear effects are small for small initial values

$$\|\xi(0)\|_{\mathcal{S}} = \Bigl(\sum_{j\in\mathcal{N}} |j|^{2s} |\xi_j(0)|^2\Bigr)^{rac{1}{2}} \leq arepsilon$$

Nonlinear perturbation of linear Hamiltonian PDE

$$H(\xi,\eta) = \sum_{j\in\mathcal{N}} \omega_j \xi_j \eta_j + P(\xi,\eta)$$

with P (at least) cubic

$$i\frac{d}{dt}\widetilde{\xi}_{j}(t) = \omega_{j}\widetilde{\xi}_{j}(t) + \varepsilon^{-1}\frac{\partial P}{\partial \eta_{j}}(\varepsilon\widetilde{\xi}_{j}(t), \overline{\varepsilon\widetilde{\xi}_{j}(t)})$$

Nonlinear effects are small for small initial values

$$\|\xi(0)\|_{\mathcal{S}} = \Bigl(\sum_{j\in\mathcal{N}} |j|^{2s} |\xi_j(0)|^2\Bigr)^{rac{1}{2}} \leq arepsilon$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

Nonlinear perturbation of linear Hamiltonian PDE

$$H(\xi,\eta) = \sum_{j\in\mathcal{N}} \omega_j \xi_j \eta_j + P(\xi,\eta)$$

with P (at least) cubic

$$i \frac{d}{dt} \widetilde{\xi}_j(t) = \omega_j \widetilde{\xi}_j(t) + O(\varepsilon)$$

Nonlinear effects are small for small initial values

$$\|\xi(0)\|_{\mathcal{S}} = \Bigl(\sum_{j\in\mathcal{N}} |j|^{2s} |\xi_j(0)|^2\Bigr)^{rac{1}{2}} \leq arepsilon$$

Long-time near-conservation of actions

Theorem

Fix N. Under assumptions of

- small initial values $\|\xi(0)\|_s \leq \varepsilon$
- regularity of the nonlinearity P
- non-resonance of the frequencies ω_i
- small dimension or zero momentum

we have near-conservation of actions

$$\sum_{j \in \mathcal{N}} |j|^{2s} \frac{|l_j(\xi(t), \overline{\xi(t)}) - l_j(\xi(0), \overline{\xi(0)})|}{\varepsilon^2} \le C_N \varepsilon^{\frac{1}{2}}$$

over long times

$$0 \le t \le \varepsilon^{-N}$$

Related results: Bambusi, Grébert (2006), Cohen, Hairer, Lubich (NLW, 2008), G., Lubich (NLS, 2010)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Discussion of the assumptions

- ▶ small initial values \longleftrightarrow small nonlinear effects
- non-resonance condition: fulfilled in many situations

• not for
$$\omega_j = j^2$$
: $i\partial_t \psi = -\Delta \psi + |\psi|^2 \psi$

• but for $\omega_j \approx j^2$: $i\partial_t \psi = -\Delta \psi + V(x)(\cdot/*)\psi + |\psi|^2 \psi$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Sketch of proof – Modulated Fourier Expansions

Solution of the linear equation $i \frac{\partial}{\partial t} \xi_j = \omega_j \xi_j$:

 $\xi_j(t) = e^{-i\omega_j t} \xi_j(0)$

Sketch of proof – Modulated Fourier Expansions

Solution of the linear equation $i \frac{\partial}{\partial t} \xi_j = \omega_j \xi_j$:

 $\xi_j(t) = e^{-i\omega_j t} \xi_j(0)$

Ansatz for solution of the nonlinear equation:

$$\xi_j(t) = \sum_{\mathbf{k}} \prod_\ell e^{-i k_\ell \omega_\ell t} z_j^{\mathbf{k}}$$

where $\mathbf{k} = (k_{\ell})_{\ell \in \mathbb{Z}}$ sequ. of integers with finitely many entries $\neq 0$

・ロト・日本・日本・日本・日本

Sketch of proof – Modulated Fourier Expansions

Solution of the linear equation $i \frac{\partial}{\partial t} \xi_j = \omega_j \xi_j$:

 $\xi_j(t) = e^{-i\omega_j t} \xi_j(0)$

Ansatz for solution of the nonlinear equation:

$$\xi_j(t) = \sum_{\mathbf{k}} e^{-i(\mathbf{k}\cdotoldsymbol{\omega})t} z_j^{\mathbf{k}}$$

where $\mathbf{k} = (k_\ell)_{\ell \in \mathbb{Z}}$ sequ. of integers with finitely many entries $\neq 0$, $\mathbf{k} \cdot \boldsymbol{\omega} = \sum_\ell k_\ell \omega_\ell$

Sketch of proof – Modulated Fourier Expansions

Solution of the linear equation $i \frac{\partial}{\partial t} \xi_j = \omega_j \xi_j$:

 $\xi_j(t) = e^{-i\omega_j t} \xi_j(0)$

Ansatz for solution of the nonlinear equation:

$$\xi_j(t) = \sum_{\mathbf{k}} e^{-i(\mathbf{k}\cdot\boldsymbol{\omega})t} Z_j^{\mathbf{k}}(\varepsilon t)$$

where $\mathbf{k} = (k_\ell)_{\ell \in \mathbb{Z}}$ sequ. of integers with finitely many entries $\neq 0$, $\mathbf{k} \cdot \boldsymbol{\omega} = \sum_\ell k_\ell \omega_\ell$

Sketch of proof – Modulated Fourier Expansions

Solution of the linear equation $i \frac{\partial}{\partial t} \xi_j = \omega_j \xi_j$:

 $\xi_j(t) = e^{-i\omega_j t} \xi_j(0)$

Ansatz for solution of the nonlinear equation:

Modulated Fourier expansion (two-scale expansion)

$$\xi_j(t) = \sum_{\mathbf{k}} e^{-i(\mathbf{k}\cdot\boldsymbol{\omega})t} z_j^{\mathbf{k}}(arepsilon t)$$

where $\mathbf{k} = (k_\ell)_{\ell \in \mathbb{Z}}$ sequ. of integers with finitely many entries $\neq 0$, $\mathbf{k} \cdot \boldsymbol{\omega} = \sum_\ell k_\ell \omega_\ell$

HAIRER, LUBICH (2000)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Sketch of proof – Modulation system

Inserting modulated Fourier expansion in equations of motion:

Modulation system

$$i \varepsilon \dot{z}_j^{\mathbf{k}} + (\mathbf{k} \cdot \boldsymbol{\omega}) z_j^{\mathbf{k}} = \omega_j z_j^{\mathbf{k}} + \text{nonlinear terms},$$

$$\sum_{\mathbf{k}} z_j^{\mathbf{k}}(0) = \xi_j(0).$$

Sketch of proof – Modulation system

Inserting modulated Fourier expansion in equations of motion:

Modulation system

$$i \varepsilon \dot{z}_j^{\mathbf{k}} + (\mathbf{k} \cdot \boldsymbol{\omega}) z_j^{\mathbf{k}} = \omega_j z_j^{\mathbf{k}} + \text{nonlinear terms},$$

$$\sum_{\mathbf{k}} z_j^{\mathbf{k}}(0) = \xi_j(0).$$

This is a Hamiltonian differential equation with invariants:

Formal invariants

$$\mathcal{I}_{\ell}(t) = \sum_{\mathbf{k},j} k_{\ell} |z_j^{\mathbf{k}}(\varepsilon t)|^2.$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

A D F A 同 F A E F A E F A Q A

Sketch of proof – Iterative solution

Iterative construction of modulation functions z_i^k on $[0, \varepsilon^{-1}]$:

- need non-resonance condition on frequencies ω_i
- small defect: ε^{N+2}
- formal invariants \mathcal{I}_{ℓ} become almost invariants:

 $|\mathcal{I}_{\ell}(t) - \mathcal{I}_{\ell}(0)| \leq C \varepsilon^{N+2}$

• almost invariants \mathcal{I}_{ℓ} are close to actions:

 $|\mathcal{I}_{\ell}(t) - I_{\ell}(t)| \leq C \varepsilon^{5/2}$

On $[0, e^{-1}]$:

• almost invariants \mathcal{I}_{ℓ} (ε^{N+2}) close to actions I_{ℓ} ($\varepsilon^{5/2}$)

On $[0, \varepsilon^{-1}]$:

• almost invariants \mathcal{I}_{ℓ} (ε^{N+2}) close to actions I_{ℓ} ($\varepsilon^{5/2}$)

On $[0, \varepsilon^{-1}]$:

• almost invariants \mathcal{I}_{ℓ} (ε^{N+2}) close to actions I_{ℓ} ($\varepsilon^{5/2}$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

On $[0, \varepsilon^{-1}]$:

• almost invariants \mathcal{I}_{ℓ} (ε^{N+2}) close to actions I_{ℓ} ($\varepsilon^{5/2}$)

▲□▶▲□▶▲□▶▲□▶ □ のへで

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Sketch of proof – Long time intervals

On $[0, e^{-1}]$:

• almost invariants \mathcal{I}_{ℓ} (ε^{N+2}) close to actions I_{ℓ} ($\varepsilon^{5/2}$)

Patch short time intervals together to long time interval $[0, \varepsilon^{-N}]$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Lie–Trotter splitting in time

Split differential equation

$$i \frac{d}{dt} \xi_j(t) = \omega_j \xi_j(t) + \frac{\partial P}{\partial \eta_j}(\xi(t), \overline{\xi(t)})$$

and solve separately

$$i\frac{d}{dt}\xi_j(t) = \omega_j\xi_j(t)$$
 $i\frac{d}{dt}\xi_j(t) = \frac{\partial P}{\partial \eta_j}(\xi(t),\overline{\xi(t)})$

Use flows of these equations for approximating $\xi^n \approx \xi(nh)$:

Lie–Trotter splitting

$$\xi^n = \Phi_h^{\text{linear}} \circ \Phi_h^P(\xi^{n-1})$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Spectral collocation method in space (Example NLS)

Ansatz

$$\psi^{M}(\mathbf{x},t) = \sum_{j \in \mathcal{N}_{M}} \xi_{j}(t) \boldsymbol{e}^{ij\mathbf{x}}$$

with finite set of indices

$$\mathcal{N}_M = \{-M, \ldots, M-1\}.$$

• Insert ψ^{M} in NLS and evaluate at collocation points

$$x_k = k rac{\pi}{M}, \quad k \in \mathcal{N}_M$$

Spectral collocation method

$$i\frac{d}{dt}\psi^{M}(x_{k},t)=(-\Delta\psi^{M}(\cdot,t))|_{x=x_{k}}+|\psi^{M}(x_{k},t)|^{2}\psi^{M}(x_{k},t)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

▲□▶▲@▶▲≣▶▲≣▶ ■ のへで

Long-time near-conservation of actions

Theorem

Fix N. Under assumptions of

- small initial values $\|\xi(0)\|_s \leq \varepsilon$
- regularity of the flow of P
- non-resonance of the frequencies ω_j and the step-size h
- zero momentum

we have near-conservation of actions

$$\sum_{i \in \mathcal{N}_M} |j|^{2s} \frac{|I_j(\xi^n, \overline{\xi^n}) - I_j(\xi^0, \overline{\xi^0})|}{\varepsilon^2} \leq C_N \varepsilon^{\frac{1}{2}}$$

over long times

$$0 \leq t_n = nh \leq \varepsilon^{-N}$$

Related results: Cohen, Hairer, Lubich (NLW, 2008), G., Lubich (NLS, 2010), Faou, Grébert, Paturel (2010)

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

Numerical experiment I (NLS)

Numerical experiment I (NLS)

numerical resonance ($h = 2\pi/\omega_{-6}$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

Numerical experiment II (NLS)

Numerical experiment II (NLS)

physical resonance (V = 0)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Sketch of proof

Modulated Fourier expansion of the numerical solution:

Modulation system

$$e^{-i(\mathbf{k}\cdot\boldsymbol{\omega})h}z_j^{\mathbf{k}} + \sum_{\ell=1}^{\infty} \frac{(\varepsilon h)^{\ell}}{\ell!} (z_j^{\mathbf{k}})^{(\ell)} e^{-i(\mathbf{k}\cdot\boldsymbol{\omega})h} = e^{-i\omega_j h} z_j^{\mathbf{k}} + \text{nonlinear terms}$$

Recall modulation system for exact solution

$$(\mathbf{k} \cdot \boldsymbol{\omega}) z_j^{\mathbf{k}} + i \varepsilon \dot{z}_j^{\mathbf{k}} = \omega_j z_j^{\mathbf{k}} + \text{nonlinear terms}$$

Similar analysis as for the exact solution!

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Long-time near-conservation of energy

Theorem

- Fix N. Under assumptions of
 - small initial values $\|\xi(0)\|_s \leq \varepsilon$
 - regularity of the flow of P
 - non-resonance of the frequencies ω_j and the step-size h
 - zero momentum

we have near-conservation of energy

$$\frac{|H(\xi^n,\overline{\xi^n})-H(\xi^0,\overline{\xi^0})|}{\varepsilon^2} \leq C_N \varepsilon^{\frac{1}{2}}$$

over long times

$$0 \leq t_n = nh \leq \varepsilon^{-N}$$

Related results: Cohen, Hairer, Lubich (NLW, 2008), G., Lubich (NLS, 2010)

Sketch of proof

Energy

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

