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Motivation

Systems of ODEs and DAEs that model electronic circuits:

Wy′(t) = h(y(t)) + gω(t)f(y(t)), y(0) = y0.

We will assume:
1 W is a constant matrix:

If W is non-singular → system of ODEs.
If W is singular → system of DAEs.

2 The functions h and f are smooth and do not depend on
ω.The function h can usually be split into a linear and a
nonlinear part:

h(y(t)) = Ay(t) +m(y(t)).

3 The forcing term gω(t) is (highly) oscillatory.
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Forcing terms

The term gω(t) can have:

One frequency (amplitude modulation):

gω(t) = eiωt, gω(t) = cosωt gω(t) = sinωt, ω ≫ 1.

Two frequencies (Double-Sided Suppressed Carrier):

gω(t) = sinω1t sinω2t, ω1 ≫ ω2 ≫ 1.

Full spectrum (equations for diodes and transistors):

gω(t) = eη cosωt, ω ≫ 1.
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A linear example

Consider the following (linear) differential equation:

y′′(t) + y(t) = 2 sinωt, y(0) = 1, y′(0) = 0.

or if y(t) = [y(t) y′(t)]T ,

y′(t) =

(

0 1
−1 0

)

y(t) + sinωt

(

0
2

)

.

Set ω = 104 and solve it with Matlab ode45 routine.
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An example
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Figure: Plot of f(t) (blue) and f ′(t) (green) given by Matlab with
relative tolerance of 10−8 (left). Detailed plot of f ′(t), showing rapid
O(ω−1) oscillation (right).
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Some ideas

Some ideas that follow from this and other examples are:

The solutions seem to be smooth base functions superimposed
with rapid oscillations that decrease in amplitude when ω
grows.

As a consequence, standard ODE solvers become less and less
efficient when ω is large.
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The form of the exact solution

Given the system

y′(t) = h(y(t)) + gω(t)f(y(t)), y(0) = y0,

if we see it as a perturbed form of

z′(t) = h(z(t)), z(0) = y0,

then non-linear variation of constants (or Alekseev-Gröbner) gives

y(t) = z(t) +

∫ t

0
Φ(t− s)f(y(s))gω(s)ds,

where Φ solves the so-called variational equation

Φ′ =
∂h(z(t))

∂z
Φ, Φ(0) = I.
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The form of the exact solution

In the linear case

y(t) = z(t) +

∫ t

0
e(t−x)Af(y(x))gω(x)dx

= eAty0 +

∫ t

0
e(t−x)Af(x,y(x))gω(x)dx.

The matrix Φ may not be analytically available in general, but if
gω(t) is a trigonometric function, then

∫ t

0
Φ(t− x)f(y(x))gω(x)dx = O(ω−1), ω → ∞.

Instead of approximating this integral using standard quadrature,
we apply the ideas from highly oscillatory problems.
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Oscillatory integrals

For Fourier-type integrals

I[f ] =

∫ b

a
f(x)eiωg(x)dx,

we can integrate by parts (if f(x) is smooth and g′(x) 6= 0) to get
an asymptotic expansion in inverse powers of ω:

I[f ] ∼ −
∞
∑

k=0

1

(−iω)k+1

[

σk(b)

g′(b)
eiωg(b) − σk(a)

g′(a)
eiωg(a)

]

,

where

σ0(x) = f(x), σk(x) =
d

dx

σk−1(x)

g′(x)
, k ≥ 1

Note that we only need information about f(x) and g(x) at the
endpoints.
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Filon-type methods

Filon-type methods are based on asymptotic ideas plus
Hermite-type interpolation (Filon, Flinn, Iserles and Nørsett).

Theorem

Given g(x) such that g′(x) 6= 0 in [a, b], and f ∈ C∞[a, b], if we
interpolate f(x) by a polynomial p(x) in a Hermite sense,

p(j)(xk) = f (j)(xk), j = 0, 1, . . . mk − 1, k = 1, 2, . . . ν,

then the Filon quadrature Q[f ] =

∫ b

a
p(x)eiωg(x)dx satisfies

E[f ] =

∫ b

a
f(x)eiωg(x)dx−Q[f ] = O(ω−s−1),

where s = min{m1,mν}.
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Filon-type methods

In particular, if we interpolate at the endpoints,

p(a) = f(a), p(b) = f(b),

then E[f ] = O(ω−2).

Consider the previous example,

y′(t) =

(

0 1
−1 0

)

y(t) + sinωt

(

0
2

)

,

with y(0) = [1, 0]T .
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Filon-type methods. Example
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Figure: Errors when solving the previous ODE with simple Filon and
different stepsizes. Here ω = 100.
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Filon-type methods. Example
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Figure: Errors when solving the previous ODE with simple Filon and
different stepsizes. Here ω = 1000.
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Modulated Fourier series

All this motivates the ansatz :

y(t) =
∞
∑

n=0

ψn(t)

ωn
,

where the functions ψn(t) can be expanded in modulated Fourier
series:

ψn(t) =

∞
∑

m=−∞

pn,m(t)eimωt, n ≥ 0.

This procedure has two main advantages:

Large values of ω will be beneficial, because we will need
fewer terms for a good approximation.

Small time-stepping can be avoided.
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Computation of the asymptotic expansion

The standard procedure is as follows:

We expand everything (formally) in inverse powers of ω using
the ansatz.

This normally involves

a separation of orders of magnitude (powers of ω),
a separation of frequencies (values of m).

Typically one obtains either nonoscillatory ODEs or recursions
for the coefficients pn,m(t).

Note that we do NOT solve any oscillatory ODE using
standard methods! The only point where oscillatory elements
come in is when assembling the terms ψn(t).
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The Fourier oscillator

As an example, consider

y′(t) = h(y(t)) + gω(t)f(y(t)), y(0) = y0,

where

gω(t) =

∞
∑

m=−∞

αmeimωt,

and h and f are smooth.

If we equate O(1) terms, we have

p′
0,0(t) = h(p0,0(t)) + α0f(p0,0(t)), p0,0(0) = y(0) = y0,

which is nonoscillatory. Additionally

p1,m(t) =
αm

im
f(p0,0(t)), m 6= 0.
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The first term

The O(ω−1) level yields again a differential equation for p1,0:

p′
1,0 = Jh(p0,0)p1,0 + Jf(p0,0)

∞
∑

r=−∞

αr p1,−r,

together with p1,0(0) = 0, and a recursion for the next level:

p2,m = − i

m

[

−p′
1,m + Jh(p0,0)p1,m + Jf(p0,0)

∞
∑

r=−∞

αrp1,m−r

]

,

for m 6= 0.
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The pattern

Each level n ≥ 0 will provide the following information:

A nonoscillatory ODE for pn,0(t).

The coefficients pn+1,m(t) for m 6= 0.

This in turn gives the initial conditions for the ODE
corresponding to the next level, pn+1,0(t), imposing that

ψ0(0) = y0, ψn(0) = 0, n ≥ 1,

so

p0,0(0) = y0, pn,0(0) = −
∑

m6=0

pn,m(0), n ≥ 1,

Then we only need to assemble the modulated Fourier
expansion...
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Band limited input and blossoming

All the computations can be simplified if the forcing term is band
limited, that is

gω(t) =
∞
∑

m=−∞

am(t)eimωt,

and there exists ̺ such that am ≡ 0 if |m| ≥ ̺+ 1.

The first ψn(t) preserve this bandwidth, but higher order terms
show an increase in the number of nonzero frequencies. This rate
of increase (analysis and prediction of intermodulation distortion in
Engineering) can be estimated for general systems from the
recurrence relations.
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Band limited input and blossoming

Theorem

For s ≥ 0, the maximum bandwidth θs of the term ψs(t) is

θs = s̺,

where ̺ is the bandwidth of the original forcing term.

Theorem

Let f(y) be constant, then we have θ0 = 0, θ1 = ̺ and the

maximum bandwidth θs of the term ψs(t) is

θs = (s− 1)̺, s ≥ 2.
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An example

Consider the following nonlinear example, given by the following
system (Bartuccelli, Deane, Gentile):

C
dVC
dt

= IL + f(VC), L
dIL
dt

= −RIL − VC ,

where

f(VC) = AVC

(

1− V 2
C

V 2
dd

)

,

and A,Vdd, C, L and R are parameters of the system. A periodic
perturbation can be introduced as follows:

f(VC , t) = (A+B sinΩt)VC

(

1− VC
V 2
dd

)

, A > 0, B ∈ R.
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An example

After normalisation and scaling, this system can be written as

du

dt
= αv +Φ(t)u(1 − u2),

dv

dt
= −u− v, (1)

where Φ(t) = β + µ sinωt and

α =
L

R2C
, β =

LA

RC
, µ =

LB

RC
, ω =

ΩL

R

Hence,

h(u, v) =

(

αv + βu(1 − u2)
−u− v

)

,

and

f(u, v) =

(

u(1− u2)
0

)

,

together with gω(t) = µ sinωt.
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An example

The first term of the expansion solves the system

p′
0,0 = h(p0,0),

since a0 ≡ 0, and additionally

p1,−1 = −µ
2
f(p0,0) = p1,1,

together with p1,m ≡ 0 when |m| > 1. The coefficient p1,0

satisfies the ODE

p′
1,0 = J[h](p0,0)p1,0, p1,0(0) = µf(p0,0(0)).

Putting everything together, we have

ψ1(t) = p1,0 − µf(p0,0) cosωt.
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An example
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Figure: Absolute errors in the approximation of the solution of the
perturbed system (1) for C = 10−6 and Ω = 2π × 106. Top row, errors
in u(t) (zeroth, zeroth plus first and zeroth plus first plus second terms,
from left to right). Bottom row, same for v(t).
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An expcos example

In the modelling of diode circuits with inductive loads, we can find
an equation of the form

x′(t) = − L

RC
x(t) +

IsL

C

[

exp

(

gω(t)− x(t)

VT

)

− 1

]

− L

C
y(t),

y′(t) = x(t),

where L,R,C, Is and VT are parameters. We will take the values
L = 10−4, R = 100, C = 10−6, Is = 10−12 and VT = 0.0259.

Alfredo Deaño Asymptotic numerical solvers for oscillatory systems of DEs



En expcos example

So

(

x(t)
y(t)

)′

= A

(

x(t)
y(t)

)

+

(

βe−x(t)/VT

0

)

exp

(

gω(t)

VT

)

−
(

β
0

)

,

where β = IsL/C, and

A =

(

−L/RC −L/C
1 0

)

.

The forcing term is gω(t) = µ cosωt, with large ω.
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An expcos example

A useful identity is

eµ cos ωt = I0(µ) + 2
∞
∑

m=1

Im(µ) cosmωt,

together with the large m asymptotic behaviour of the modified
Bessel functions:

Im(z) ∼ 1√
2πm

( ez

2m

)m
, m→ ∞.

Also, a uniform expansion (for 0 < z <∞) is

Im (mz) ∼ emη

(2πm)
1

2 (1 + z2)
1

4

, m→ ∞,

where
η = (1 + z2)

1

2 + ln
z

1 + (1 + z2)
1

2

.
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An expcos example

In this case, we obtain

p0,0 = h(p0,0) + I0(µ)f(p0,0), p0,0(0) = x(0),

and also

p1,m = − iIm(µ)

m
f(p0,0), m 6= 0.

p′
1,0 = (J[h] + I0(µ)J[f ])p1,0, p1,0(0) = 0,

which implies p1,0 ≡ 0. Therefore,

ψ1(t) = 2f(p0,0)
∞
∑

m=1

Im(µ)

m
sinmωt.

The second term ψ2(t) can be computed similarly.
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More on modulated Fourier expansions

Other settings and related methods:

Equations of the form ẍ+Ω2x = g(x), where

Ω =

(

0 0

0 ωI

)

,

and ω ≫ 1.

Hairer and Lubich (SIAM J. Num. Anal. 2000),
Cohen, Hairer and Lubich (FoCM, 2003),
Cohen (PhD thesis, 2004),
Hairer, Lubich and Wanner (Springer, 2006).
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More on modulated Fourier expansions

Equations with ω-dependent coefficients, like the inverted
pendulum:

θ′′(t) = l−1(g + σω cosωt) sin θ(t),

with θ(0) = θ0, θ
′(0) = θ′0.

See also E and Engquist (2003), Sanz–Serna (2009).

The construction is closely related to stroboscopic and higher
order averaging:

Calvo, Chartier, Murua, Sanz-Serna (2010),
Chartier, Murua, Sanz-Serna (2011).
Several talks last Monday...
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To sum up

We have presented an asymptotic-numerical method to solve
efficiently highly oscillatory systems of ODEs, based on:

Asymptotic expansions in inverse powers of the oscillatory
parameter ω.

Modulated Fourier expansions.

Solving non-oscillatory ODEs and recursions for the
coefficients in the expansion.

Computing effort which is essentially independent of ω.

DAEs, delay differential equations in progress...
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And finally...

That’s all for now...

Thank you for your attention!
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