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Highly-oscillatory non-autonomous problems
.
General form

Consider highly-oscillatory problems (HOPs) with:
@ a clear and explicit separation of the time-scales
@ a quasi-periodic dependence in the fast time

Highly-oscillatory problems with periodic time-dependence

ef(y(t),tw) € RP, weRY,
Yo

o

@ ¢ is a small parameter (scales as the inverse of the
frequency).

@ f(y,#) is a smooth , 27-periodic w.r.t. to each angle ¢;, and
possesses a Fourier expansion f(y, ) = 3, .« € ®If(y)

where :

>



Highly-oscillatory non-autonomous problems
°
Examples

Examples of nhon-autonomous multi-frequency problems:
@ Mathieu’s equation:

X + wd(1 — ecos(t))x = 0.
@ Duffing oscillator:
%+ BX + W2 3_ .2
wgX + ax® = ewg cos(t)

@ A class of non-autonomous systems (will be treated in full
generality in Ander’s talk):

X = AX + h(x)

rewritten as
7 =ce %h (etAz>

— Fermi-Pasta-Ulam type problem.
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High-order averaging in quasi-periodic systems
[ ]

The idea of averaging in the literature

Appears in various forms:
@ “Standard” form in KAM theory
@ Two-scale expansions in quantum mechanics
(Wentzel-Kramers-Brillouin, 1926)
@ Magnus expansions (A. Iserles, 2002)
@ Modulated Fourier expansions (E. Hairer and Chr. Lubich,
2000)
Theory has been gradually improved for the systems
considered here:
@ Krylov and Bogoliubov (1934) : basic idea
@ Bogoliubov and Mitropolski (1958) : rigorous statement for
second order approximation and general scheme
@ Perko (1969) : almost complete theory with error estimates
for the periodic and quasi-periodic cases (see also the
book of Sanders, Verhulst and Murdock, 2007)



High-order averaging in quasi-periodic systems
[ Je]

Averaging of high-order according to Perko, SIAM 1969

Theorem (Perko)

For a smooth f : RP x T4 — RP and a vector w € RY such that
forallk € Z9, |k - w| > c|k|~, consider the ODE

y'(t) = f(y(t),tw), y(0) = Yo.

Then for any N > 1, there exist:
@ ()amap Uy =id + ... +eN"Tuy_; from RP x T9 to RP,
@ (ii) a vector field F1 + ... + eNFy,
@ (iii) a constant Cy,

such that the solution Y of the autonomous ODE

Y' =eF(Y)+... +VFn(Y), Un(Y(0),0) =yo,

satisfies
ly(t) — Un(Y (1), tw) < CneN fort < L/e.




High-order averaging in quasi-periodic systems
oe

Averaging of high-order according to Perko, SIAM 1969

The functions u; (and thus F;) are not unique except for F;

-1 K
o~ 1 o~ f OUy
FJ(Y70):Z|:W Z W(ua’...,un() —WFJ_k],
k=1 i1+ Fig=j—1
1 .
Fi(Y) = W/]I‘d Fi(Y,0)déo,
w- Ty 0) = B ,0) ~ F(Y),

@ d = 1: We can impose u;(Y,0) = 0, this is stroboscopic
or averaging, in the sense that U(Y,2kn) =Y;

@ d > 1: The choice ;4 uj(Y,0)d# = O is the one
prescribed in Perko’s theorem.




High-order averaging in quasi-periodic systems

Objectives

Why do we consider stroboscopic averaging using
B-series rather than anything else?

@ Quasi-stroboscopic averaging is intrinsically geometric.
@ B-series allow the derivation of fully explicit expansions, a
very useful feature for the analysis of numerical methods.

@ Stroboscopic averaging has proved to be the portal for new
numerical schemes in the mono-frequency situation and it
is expected that methods can be developed based on
guasi-stroboscopic averaging.
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Expansion of the highly-oscillatory sol
[ 1)
Starting point of our approach

The exact oscillatory solution is obtained in three steps:
@ First step: Integral formulation

y(t) =yo+e /0 f(y(s), sw)ds

@ Second step: Fourier expansion of the vector field

t)—yo+e/ S et (y(s))ds

kezd

© Third step: insertion ala Picard and Taylor expansion

t
DD </ eis("'“)ds> f(Yo) + O(?)
K 0
t rS1 i
s ( I e'51<k'“>+52<"“>dsldSz> (i1)(v0) + O)
Kl 0J0

y(t)



Expansion of the highly-oscillatory sol
oe
Starting point of our approach

The procedure may be pursued iteratively with increasing
complexity. It involves two ingredients of different nature:

© Problem-dependent elements : so-called elementary
differentials based on the Fourier coefficients of f at yq

fu(yo),  f(o)fi(yo), f/(Yo) (fi(Yo),fm(¥0)), -

@ Universal elements : time-dependent coefficients

/ ois(kw) g / / eisi(kw)s2(w) g, ds,
0

depending only on w
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@ Expansion of the highly-oscillatory solution: B-series approach



Mode-coloured B-series

The set 7 of mode-coloured trees is defined recursively by:
© Forallk € 79, ® belongs to T;
Q Ifuy, ..., u, are n trees of T, then, the tree
u= [U]_,...,Un]k

obtained by connecting their roots to a new root with
multi-index k € Z9, belongs to 7.

The order |u| of a tree u € T is its number of nodes.



Mode-coloured B-series

Elementary differentials are defined recursively by the
formulae:

Q@ 7(©(¥o) = fk(¥o)
Q Fiur.-.u (¥0) = G (30) (Fus (Vo). - Fu (¥0))

NNE: 97

|u| 2 3 3
Fuy) [ fy) | FOWf(Y) | T YY) | fn (YY), f(y))

Figure: Trees of orders < 3 and associated elementary differentials




B-series ansatz and coefficient recursions

Mode-coloured B-series are power series indexed by trees:

u
g
B(0,y) =gy + > ——duFuly)

uer Y

where ¢ is the symmetry factor and o € C7V{0},

Pluging y(t) = B(«(t), yo) into the integral formulation leads to:

t
vk € Z9, am\(t :/ RS
) ;

t .
WU = [Up,. .., U]k, au(t):/o e5k©)q, () ay, (5)ds.




A more algebraic view (1)

@ Given two B-series B(4,y) with 6y = 1 and B(n,y), their
composition

B(n,B(4,y))

is a B-series with coefficients a x 3 € CTY{0},
@ This law endows

G:={6eC”® . 5 =1}

with a Lie-group structure, with neutral element 1.
@ The corresponding Lie-algebra is

g = {peC’ .5, =0}

= (990 o agt) € 6 with a(0) = 1}
dt |




A more algebraic view (II)

Ouir first task is to rewrite the vector field itself as a B-series
. |ul
e > e Di(y) =B(8(0).y) = Y —Au(O)Fuly)

kezd ueT Y

with coefficients g, (#) defined for u € 7 U {(} as follows:

Bu(6) = elkf) jfu = () for some k € A
0 otherwise.

Writing the IVP in terms of B-series, we obtain

SB(a(t).yo) = Bla(t) *A(t)).yo).
B(a(0),Yo) = B(1,Yo),



a(t) as the solution of an initial value problem

Consequence: « is a curve in G satisfying the IVP

{%a(t) = a(t) * B(tw),
a(0) = 1

Since fy(#) = 0 whenever |u| # 1, we obtain for u = [ug - - - Un]k

dau(

ﬁ@ tw)ay, (t) ... ay,(t)

and after integration

t .
ou(t) = /o e5k) oy () -+ - oy, (8)ds.




a(t) as the solution of an initial value problem

| ou(t) |

fé eisi(kw) ds,

f(; fosl ei(sik+sal)w ds; ds,

fo S2 gl i(sik+szl+szm)-w dSl dSQ d83

Zeoea -

f(; gisi(m-w) (f051 eiSZ(I'“’)dSZ fosl eis3(k-w)ds3) ds;

Figure: First coefficients of the oscillatory B-series expansion
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e A transport equation for the B-series coefficients



The density argument

Assume that w is non-resonant and consider w € CExT g
continuous function, such that for all 8, w(-, #) is polynomial. If
for all t, w(t,tw) = 0, then for all (t,8), w(t,8) = 0.

Consequence: for allu € T, ay(t) is of the form

ay(t) = Pu(t,e“‘”l, o ’eitwd7e—itw1’ o 7e—itwd)

where Py € C[X,Z1,...,Zq,Z; %, ..., Z5 '] is defined uniquely .

Consideru = % with | # —k, k,1 # 0: then

—(k-w)+ ((I +k)- w)eit(l-w) — (I .w)eit((l+k)-w)
(k@) w) (1K) )
—(k-w) + (LK) - )T, 2 = (- w)[T, 20
(k-w)(I-w) (I + k) ~w)

Qy -

Pu —




Formulating the ODE as a transport PDE

We can finally write ay(t) = qu(t, )|y, Where
Yu(t,0) = Py(t,el%, ... el e et

. . d
is a function of CExT"

The chain rule and the density argument then show that:

For all (t,0) € R x T

8t7(t7 0) tw: VG’Y(tv 0) = 7(t7 0) & 18(9)
~7(0,0) = 1




Uniqueness of the solution

In full generality, for any function x(0) € G™ such that x(0) =1,

Y(t,0) = x(0 —tw) + /Ot Y(s,0 + (s — t)w) * B(0 + (s — t)w)ds

is solution of the transport equation.

Definition

A coefficient map § € G®<™ is said to be polynomial if
YUET, &(t,6)=Pult,e, ... e% e . e%)

with Py € C[Zo,Z4,...,24,2Z7 4., 25 1]

A\

Theorem

There exists a unique polynomial solution v € GRXT* of

8t7(t7 0) tw: Vg’)/(t, 0) = 7(t7 0) & /8(9)
~7(0,0) = 1




A fundamental consequence

Forallt,t’ e Randall § € TY,

y(t +t,0) = y(t',0) xy(t,0).

Proof: Lett’ be fixed. By right-linearity and associativity of the
convolution product x:

(@+w-0) (.0 ealt +1,0)) =
YU,0)" e (B +w-dp)  A(t+1,0)
Y(t',0) " At +t,8) = 5(6)
Hence, ~(t’,0)~1 % y(t’ +t, #) satisfies the transport equation

with
(t',0)" L xA(t,0) =1
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e Quasi-stroboscopic averaging with B-series



Main ingredients of the quasi-stroboscopic procedure: @, 3 and «

Reminder: y(t +t/,0) = y(t’,0) = ~(t,0)

@ Averaged solution: & € G® is the coefficient map obtained
by freezing the oscillations in «:

a(t) =~(t,0)

Previous theorem shows a(t) is a 1-parameter group.

@ Averaged vector field: By standard results on ODEs, a(t)
satisfies the autonomous ODE

d B _ d
aa(t) =a(t)xf with §= aa(t)

o)
(¢,
t=0 ~a

t=0

@ Change of variables: Previous theorem then shows that

a(t) = a(t) x k(tw) with k() =~(0,0)



Quasi-stroboscopic averaging: a schematic view

{

d
O — R (Y (1)),

Y (0) = Yo= Yo

Figure: Quasi-stroboscopic averaging in terms of B-series



Statement of the result

The solution of

y'(t) = ef(y(t), tw), y(0) =Yo
may be written as y(t) = U(Y (t), tw) where
|ul
£
U(Y.0) =Y + D ——ru(8)Fu(Y)
ueT
and Y (t) is the solution of the (averaged) autonomous IVP

Y/(t)=eF(Y), Y(0)=yo

with




Outline

e Geometric properties of quasi-stroboscopic averaging



The subgroup G C G and the sub-algebra§ C g

Consider the subgroup G C G of coefficient maps ¢ such that

V(U,V,W) S T37 duov + dvou = Oudy
(5(uov)ow + 5(vou)ow + 6(WOU)OV = dudyow

where o denotes the Butcher product (grafting).

G is the group of flows that preserve cubic polynomial invariants
and/or the group of volume-preserving flows.

We denote the corresponding Lie subalgebra § C g.



B-series as series of Lie-derivative indexed by words for § € G U §

Previous relations allow the rewriting of B-series as series
indexed by words kj - - - k, where the k; € Z9:

VoegG, B(sy)=y+ Zé‘ Z Oy ke Fieqokr
r=1 k.. kezd

where:

@ O .k, =0 if uy,..k, is defined by

- @ Uk ke = [ukl'“krfl]kr

@ fi, ..., is defined by

ficyoie () = Oy Fipooe 2 (V)i (¥)

uklmkr



B-series as series of Lie-brackets indexed by words for 6 € §

The Dynkin-Specht-Wever theorem finally enables to write:
. e
vﬂEng(/ﬁvy) :ZT Z ﬂkl"'kr[["'[fk17fk2]7fk3]>‘"]7fkr](y)

r=1 kl,...,krGZd

where, for any two vector fields g and h

[9,hl(y) =h(y)a(y) — g'(y)h(y)

Since vy (t, tw) € G, it follows:

Wt Yt tw) € 6 v(t,0), 1u(t,0) € ¢ = W, (t,0) € G
so that d+(t.0)
n_ ’Y 9 ~




Geometric consequences

© The quasi-stroboscopic averaged equation can be
rewritten as:

%Y = Z Z i_erl---kr[["' [fk17fk2]vfk3]7’”]’fkr](Y)

r=1 kl,...,krEZd

Q@ If the original vector field f(y,tw) is divergence free, then
so is the quasi-stroboscopic averaged vector field.

© |f the original vector field f(y, tw) is Hamiltonian with
f = J71VH,, then so is the quasi-stroboscopic averaged
vector field with Hamiltonian

A=Y Y Dhg (M M b Hiod ) Hi )

r=1 kl,...,krEZd

i
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Ongoing work:

@ Stroboscopic averaging for the nonlinear Schrédinger
equation (Castella, C. , Méhats and Murua)

@ Stroboscopic symplectic composition methods (C., Murua,
Wang)
Perspectives:
@ Error estimates
@ Quasi-stroboscopic numerical methods
@ Extension to the wave equation
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