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General form

Consider highly-oscillatory problems (HOPs) with:

a clear and explicit separation of the time-scales

a quasi-periodic dependence in the fast time

Highly-oscillatory problems with periodic time-dependence

{

y ′(t) = εf (y(t), tω) ∈ R
D, ω ∈ R

d ,
y(0) = y0

where :

ε is a small parameter (scales as the inverse of the
frequency).

f (y , θ) is a smooth , 2π-periodic w.r.t. to each angle θi , and
possesses a Fourier expansion f (y , θ) =

∑

k∈Zd ei(k·θ)fk(y).
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Examples

Examples of non-autonomous multi-frequency problems:

Mathieu’s equation:

ẍ + ω2
0(1 − ε cos(t))x = 0.

Duffing oscillator:

ẍ + βẋ + ω2
0x + αx3 = εω2

0 cos(t)

A class of non-autonomous systems (will be treated in full
generality in Ander’s talk):

ẋ = Ax + εh(x)

rewritten as
ż = εe−tAh

(

etAz
)

→ Fermi-Pasta-Ulam type problem.
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The idea of averaging in the literature

Appears in various forms:

“Standard” form in KAM theory

Two-scale expansions in quantum mechanics
(Wentzel-Kramers-Brillouin, 1926)

Magnus expansions (A. Iserles, 2002)

Modulated Fourier expansions (E. Hairer and Chr. Lubich,
2000)

Theory has been gradually improved for the systems
considered here:

Krylov and Bogoliubov (1934) : basic idea

Bogoliubov and Mitropolski (1958) : rigorous statement for
second order approximation and general scheme

Perko (1969) : almost complete theory with error estimates
for the periodic and quasi-periodic cases (see also the
book of Sanders, Verhulst and Murdock, 2007)
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Averaging of high-order according to Perko, SIAM 1969

Theorem (Perko)

For a smooth f : RD × T
d → R

D and a vector ω ∈ R
d such that

for all k ∈ Z
d , |k · ω| ≥ c|k |−ν , consider the ODE

y ′(t) = εf (y(t), tω), y(0) = y0.

Then for any N > 1, there exist:

(i) a map UN = id + . . .+ εN−1uN−1 from R
D × T

d to R
D,

(ii) a vector field εF1 + . . .+ εNFN ,

(iii) a constant CN ,

such that the solution Y of the autonomous ODE

Y ′ = εF1(Y ) + . . . + εNFN(Y ), UN(Y (0),0) = y0,

satisfies

‖y(t) − UN(Y (t), tω)‖ ≤ CNε
N for t ≤ L/ε.



logo

Highly-oscillatory non-autonomous problems High-order averaging in quasi-periodic systems Expansion of the highly-oscillatory solution:

Averaging of high-order according to Perko, SIAM 1969

The functions ui (and thus Fi ) are not unique except for F1

F̃1(Y ) = f (y , θ),

F̃j(Y , θ) =

j−1
∑

k=1

[ 1
k!

∑

i1+...+ik=j−1

∂k f
∂yk

(

ui1, . . . ,uik

)

−
∂uk

∂Y
Fj−k

]

,

Fj(Y ) =
1

(2π)d

∫

Td
F̃j(Y , θ)dθ,

ω ·
∂uj

∂θ
(Y , θ) = F̃j(Y , θ)− Fj(Y ).

d = 1: We can impose uj(Y ,0) = 0, this is stroboscopic
or averaging, in the sense that U(Y ,2kπ) = Y ;

d > 1: The choice
∫

Td uj(Y , θ)dθ = 0 is the one
prescribed in Perko’s theorem.
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Objectives

Why do we consider stroboscopic averaging using
B-series rather than anything else?

Quasi-stroboscopic averaging is intrinsically geometric.

B-series allow the derivation of fully explicit expansions, a
very useful feature for the analysis of numerical methods.

Stroboscopic averaging has proved to be the portal for new
numerical schemes in the mono-frequency situation and it
is expected that methods can be developed based on
quasi-stroboscopic averaging.
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Starting point of our approach

The exact oscillatory solution is obtained in three steps:
1 First step: Integral formulation

y(t) = y0 + ε

∫ t

0
f (y(s), sω)ds

2 Second step: Fourier expansion of the vector field

y(t) = y0 + ε

∫ t

0

∑

k∈Zd

eis(k·ω)fk(y(s))ds

3 Third step: insertion à la Picard and Taylor expansion

y(t) = · · ·+ ε
∑

k

(

∫ t

0
eis(k·ω)ds

)

fk(y0) +O(ε2)

= · · ·+ ε2
∑

k,l

(

∫ t

0

∫ s1

0
eis1(k·ω)+s2(l·ω)ds1ds2

)

(f ′k fl)(y0) +O(ε3)

...
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Starting point of our approach

The procedure may be pursued iteratively with increasing
complexity. It involves two ingredients of different nature:

1 Problem-dependent elements : so-called elementary
differentials based on the Fourier coefficients of f at y0

fk(y0), f ′k(y0)fl(y0), f ′′k (y0) (fl(y0), fm(y0)) , · · ·

2 Universal elements : time-dependent coefficients

∫ t

0
eis(k·ω)ds,

∫ t

0

∫ s1

0
eis1(k·ω)+s2(l·ω)ds1ds2, · · ·

depending only on ω
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Mode-coloured B-series

The set T of mode-coloured trees is defined recursively by:

1 For all k ∈ Z
d , k belongs to T ;

2 If u1, . . . , un are n trees of T , then, the tree

u = [u1, . . . ,un]k

obtained by connecting their roots to a new root with
multi-index k ∈ Z

d , belongs to T .

The order |u| of a tree u ∈ T is its number of nodes.
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Mode-coloured B-series

Elementary differentials are defined recursively by the
formulae:

1 F k (y0) = fk(y0)

2 F[u1,...,un]k (y0) =
∂nfk
∂yn (y0)

(

Fu1(y0), . . . ,Fun(y0)
)

u k l

k

m

l

k

m

l k

|u| 1 2 3 3

Fu(y) fk(y) f ′l (y)fk(y) f ′m(y)f ′l (y)fk(y) f ′′m(y)(fl(y), fk(y))

Figure: Trees of orders ≤ 3 and associated elementary differentials
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B-series ansatz and coefficient recursions

Mode-coloured B-series are power series indexed by trees:

B(δ, y) = δ∅y +
∑

u∈T

ε|u|

σu
δuFu(y)

where σ is the symmetry factor and α ∈ C
T ∪{∅}.

Pluging y(t) = B(α(t), y0) into the integral formulation leads to:

∀k ∈ Z
d , α k (t) =

∫ t

0
eisk·ωds

∀u = [u1, . . . ,un]k , αu(t) =
∫ t

0
eis(k·ω)αu1(s) · · ·αun(s)ds.



logo

Highly-oscillatory non-autonomous problems High-order averaging in quasi-periodic systems Expansion of the highly-oscillatory solution:

A more algebraic view (I)

Given two B-series B(δ, y) with δ∅ = 1 and B(η, y), their
composition

B(η,B(δ, y))

is a B-series with coefficients α ∗ β ∈ C
T ∪{∅}.

This law endows

G := {δ ∈ C
T ∪{∅} : δ∅ = 1}

with a Lie-group structure, with neutral element 11.

The corresponding Lie-algebra is

g = {β ∈ C
T ∪{∅} : β∅ = 0}

= {
dα(t)

dt

∣

∣

∣

∣

t=0
for α(t) ∈ G with α(0) = 11}
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A more algebraic view (II)

Our first task is to rewrite the vector field itself as a B-series

ε
∑

k∈Zd

ei(k·θ)fk (y) = B(β(θ), y) =
∑

u∈T

ε|u|

σu
βu(θ)Fu(y)

with coefficients βu(θ) defined for u ∈ T ∪ {∅} as follows:

βu(θ) =







ei(k·θ) if u = k for some k ∈ Z
d ,

0 otherwise.

Writing the IVP in terms of B-series, we obtain

d
dt

B(α(t), y0) = B(α(t) ∗ β(tω)), y0),

B(α(0), y0) = B(11, y0),
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α(t) as the solution of an initial value problem

Consequence: α is a curve in G satisfying the IVP

{ d
dtα(t) = α(t) ∗ β(tω),
α(0) = 11

Since βu(θ) = 0 whenever |u| 6= 1, we obtain for u = [u1 · · · un]k

dαu(t)
dt

= β k (tω)αu1(t) . . . αun(t)

and after integration

αu(t) =
∫ t

0
eis(k·ω)αu1(s) · · ·αun(s)ds.
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α(t) as the solution of an initial value problem

u αu(t)

k

∫ t
0 eis1(k·ω) ds1

l

k
∫ t

0

∫ s1
0 ei(s1k+s2l)·ω ds1 ds2

m

l

k

∫ t
0

∫ s1
0

∫ s2
0 ei(s1k+s2l+s3m)·ω ds1 ds2 ds3

m

l k
∫ t

0 eis1(m·ω)
(∫ s1

0 eis2(l·ω)ds2
∫ s1

0 eis3(k·ω)ds3
)

ds1

Figure: First coefficients of the oscillatory B-series expansion
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The density argument

Lemma

Assume that ω is non-resonant and consider w ∈ C
R×Td

a
continuous function, such that for all θ, w(·, θ) is polynomial. If
for all t , w(t , tω) = 0, then for all (t , θ), w(t , θ) = 0.

Consequence: for all u ∈ T , αu(t) is of the form

αu(t) = Pu(t ,eitω1 , . . . ,eitωd ,e−itω1 , . . . ,e−itωd )

where Pu ∈ C[X ,Z1, . . . ,Zd ,Z
−1
1 , . . . ,Z−1

d ] is defined uniquely .

Consider u = l

k

with l 6= −k, k, l 6= 0: then

αu =
−(k · ω) + ((l + k) · ω)eit(l·ω) − (l · ω)eit((l+k)·ω)

(k · ω)(l · ω) ((l + k) · ω)

Pu =
−(k · ω) + ((l + k) · ω)

∏d
i=1 Z li

i − (l · ω)
∏d

i=1 Z li+k i
i

(k · ω)(l · ω) ((l + k) · ω)
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Formulating the ODE as a transport PDE

We can finally write αu(t) = γu(t , θ)|θ=tω where

γu(t , θ) = Pu(t ,eiθ1 , . . . ,eiθd ,e−iθ1, . . . ,e−iθd )

is a function of CR×Td
.

The chain rule and the density argument then show that:

For all (t , θ) ∈ R× T
d

∂tγ(t , θ) + ω · ∇θγ(t , θ) = γ(t , θ) ∗ β(θ)

γ(0,0) = 11
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Uniqueness of the solution

In full generality, for any function χ(θ) ∈ GTd
such that χ(0) = 11,

γ(t , θ) = χ(θ − tω) +
∫ t

0
γ(s, θ + (s − t)ω) ∗ β(θ + (s − t)ω)ds

is solution of the transport equation.

Definition

A coefficient map δ ∈ GR×Td
is said to be polynomial if

∀u ∈ T , δu(t , θ) = Pu(t ,eiθ1 , . . . ,eiθd ,e−iθ1, . . . ,e−iθd )

with Pu ∈ C[Z0,Z1, . . . ,Zd ,Z
−1
1 , . . . ,Z−1

d ].

Theorem

There exists a unique polynomial solution γ ∈ GR×Td
of

∂tγ(t , θ) + ω · ∇θγ(t , θ) = γ(t , θ) ∗ β(θ)

γ(0,0) = 11
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A fundamental consequence

Theorem

For all t , t ′ ∈ R and all θ ∈ T
d ,

γ(t + t ′, θ) = γ(t ′,0) ∗ γ(t , θ).

Proof: Let t ′ be fixed. By right-linearity and associativity of the
convolution product ∗:

(∂t + ω · ∂θ)
(

γ(t ′,0)−1 ∗ γ(t ′ + t , θ)
)

=

γ(t ′,0)−1∗ (∂t + ω · ∂θ) γ(t + t ′, θ)

γ(t ′,0)−1∗ γ(t ′ + t , θ) ∗ β(θ)

Hence, γ(t ′,0)−1 ∗ γ(t ′ + t , θ) satisfies the transport equation
with

γ(t ′,0)−1 ∗ γ(t ′,0) = 11

.
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Main ingredients of the quasi-stroboscopic procedure: ᾱ, β̄ and κ

Reminder: γ(t + t ′, θ) = γ(t ′,0) ∗ γ(t , θ)

Averaged solution: ᾱ ∈ GR is the coefficient map obtained
by freezing the oscillations in α:

ᾱ(t) = γ(t ,0)

Previous theorem shows ᾱ(t) is a 1-parameter group.

Averaged vector field: By standard results on ODEs, ᾱ(t)
satisfies the autonomous ODE

d
dt

ᾱ(t) = ᾱ(t) ∗ β̄ with β̄ =
d
dt

ᾱ(t)

∣

∣

∣

∣

t=0
=

∂

∂t
γ(t ,0)

∣

∣

∣

∣

t=0

Change of variables: Previous theorem then shows that

α(t) = ᾱ(t) ∗ κ(tω) with κ(θ) = γ(0, θ)
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Quasi-stroboscopic averaging: a schematic view

{ dy(t)
dt = εf (y(t), tω),

y(0) = y0

y(t) = B(α(t), y0)
←−−−−−−−−−−−−−−−→
εf (y, θ) = B(β(θ), y)

{ dα(t)
dt = α(t) ∗ β(tω),

α(0) = 11

y(t) = U(Y (t), tω) l l α(t) = ᾱ(t) ∗ κ(tω)

{ dY (t)
dt = εF (Y (t)),

Y (0) = Y0= y0

Y (t) = B(ᾱ(t), Y0)
←−−−−−−−−−−−−→

εF(Y ) = B(β̄, Y )

{ dᾱ(t)
dt = ᾱ(t) ∗ β̄,

ᾱ(0) = 11

Figure: Quasi-stroboscopic averaging in terms of B-series
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Statement of the result

Theorem

The solution of

y ′(t) = εf (y(t), tω), y(0) = y0

may be written as y(t) = U(Y (t), tω) where

U(Y , θ) = Y +
∑

u∈T

ε|u|

σu
κu(θ)Fu(Y )

and Y (t) is the solution of the (averaged) autonomous IVP

Y ′(t) = εF (Y ), Y (0) = y0

with

εF (Y ) := B(β̄,Y ) =
∑

u∈T

ε|u|

σu
β̄uFu(Y )
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The subgroup Ĝ ⊂ G and the sub-algebra ĝ ⊂ g

Consider the subgroup Ĝ ⊂ G of coefficient maps δ such that

∀(u, v ,w) ∈ T 3, δu◦v + δv◦u = δuδv

δ(u◦v)◦w + δ(v◦u)◦w + δ(w◦u)◦v = δuδvδw

where ◦ denotes the Butcher product (grafting).

Remark

Ĝ is the group of flows that preserve cubic polynomial invariants
and/or the group of volume-preserving flows.

We denote the corresponding Lie subalgebra ĝ ⊂ g.
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B-series as series of Lie-derivative indexed by words for δ ∈ Ĝ ∪ ĝ

Previous relations allow the rewriting of B-series as series
indexed by words k1 · · · kr where the k i ∈ Z

d :

∀δ ∈ Ĝ, B(δ, y) = y +

∞
∑

r=1

εr
∑

k1,...,kr∈Zd

δk1···kr fk1···kr

where:

δk1···kr = δuk1···kr
if uk1···kr is defined by

uk1 = k1
uk1···kr = [uk1···kr−1]kr

fk1···kr is defined by

fk1···kr (y) = ∂y fk1···kr−1(y)fkr (y)
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B-series as series of Lie-brackets indexed by words for δ ∈ ĝ

The Dynkin-Specht-Wever theorem finally enables to write:

∀β ∈ ĝ,B(β, y) =
∞
∑

r=1

εr

r

∑

k1,...,kr∈Zd

βk1···kr [[. . . [fk1 , fk2 ], fk3 ], . . .], fkr ](y)

where, for any two vector fields g and h

[g,h](y) = h′(y)g(y) − g′(y)h(y)

Since γu(t , tω) ∈ Ĝ, it follows:

∀t , γu(t , tω) ∈ Ĝ
density
=⇒ ∀(t , θ), γu(t , θ) ∈ Ĝ =⇒ ∀t , γu(t ,0) ∈ Ĝ

so that

β̄ =
dγ(t ,0)

dt

∣

∣

∣

∣

t=0
∈ ĝ
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Geometric consequences

Theorem
1 The quasi-stroboscopic averaged equation can be

rewritten as:

d
dt

Y =

r
∑

r=1

∑

k1,...,kr∈Zd

εr

r
β̄k1···kr [[. . . [fk1 , fk2 ], fk3 ], . . .], fkr ](Y )

2 If the original vector field f (y , tω) is divergence free, then
so is the quasi-stroboscopic averaged vector field.

3 If the original vector field f (y , tω) is Hamiltonian with
fk = J−1∇Hk , then so is the quasi-stroboscopic averaged
vector field with Hamiltonian

H̄ =
r
∑

r=1

∑

k1,...,kr∈Zd

εr

r
β̄k1···kr {{. . . {Hk1

,Hk2
},Hk3

}, . . .},Hkr }
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