

Quasi-stroboscopic averaging: The non-autonomous case

Philippe Chartier
INRIA and ENS Cachan
Bruz

Joint work with Ander Murua and Jesus-Maria Sanz-Serna

Geometric Numerical Integration, Oberwolfach 2011

Outline

- 1 Highly-oscillatory non-autonomous problems
- 2 High-order averaging in quasi-periodic systems
- 3 Expansion of the highly-oscillatory solution: naive approach
- 4 Expansion of the highly-oscillatory solution: B-series approach
- 5 A transport equation for the B-series coefficients
- 6 Quasi-stroboscopic averaging with B-series
- 7 Geometric properties of quasi-stroboscopic averaging
- 8 Ongoing work and perspectives

Outline

- 1 Highly-oscillatory non-autonomous problems
- 2 High-order averaging in quasi-periodic systems
- 3 Expansion of the highly-oscillatory solution: naive approach
- 4 Expansion of the highly-oscillatory solution: B-series approach
- 5 A transport equation for the B-series coefficients
- 6 Quasi-stroboscopic averaging with B-series
- 7 Geometric properties of quasi-stroboscopic averaging
- 8 Ongoing work and perspectives

Consider highly-oscillatory problems (HOPs) with:

- a clear and explicit separation of the time-scales
- a quasi-periodic dependence in the fast time

Highly-oscillatory problems with periodic time-dependence

$$\begin{cases} y'(t) &= \varepsilon f(y(t), t\omega) \in \mathbb{R}^D, & \omega \in \mathbb{R}^d, \\ y(0) &= y_0 \end{cases}$$

where :

- ε is a small parameter (scales as the inverse of the frequency).
- $f(y, \theta)$ is a **smooth**, 2π -periodic w.r.t. to each angle θ_i , and possesses a Fourier expansion $f(y, \theta) = \sum_{\mathbf{k} \in \mathbb{Z}^d} e^{i(\mathbf{k} \cdot \theta)} f_{\mathbf{k}}(y)$.

Examples of non-autonomous multi-frequency problems:

- Mathieu's equation:

$$\ddot{x} + \omega_0^2(1 - \varepsilon \cos(t))x = 0.$$

- Duffing oscillator:

$$\ddot{x} + \beta \dot{x} + \omega_0^2 x + \alpha x^3 = \varepsilon \omega_0^2 \cos(t)$$

- A class of non-autonomous systems (will be treated in full generality in Ander's talk):

$$\dot{x} = Ax + \varepsilon h(x)$$

rewritten as

$$\dot{z} = \varepsilon e^{-tA} h(e^{tA} z)$$

→ Fermi-Pasta-Ulam type problem.

Outline

- 1 Highly-oscillatory non-autonomous problems
- 2 High-order averaging in quasi-periodic systems
- 3 Expansion of the highly-oscillatory solution: naive approach
- 4 Expansion of the highly-oscillatory solution: B-series approach
- 5 A transport equation for the B-series coefficients
- 6 Quasi-stroboscopic averaging with B-series
- 7 Geometric properties of quasi-stroboscopic averaging
- 8 Ongoing work and perspectives

Appears in various forms:

- “Standard” form in KAM theory
- Two-scale expansions in quantum mechanics
(Wentzel-Kramers-Brillouin, 1926)
- Magnus expansions (A. Iserles, 2002)
- Modulated Fourier expansions (E. Hairer and Chr. Lubich, 2000)

Theory has been gradually improved for the systems considered here:

- Krylov and Bogoliubov (1934) : basic idea
- Bogoliubov and Mitropolski (1958) : rigorous statement for second order approximation and general scheme
- Perko (1969) : almost complete theory with error estimates for the periodic and quasi-periodic cases (see also the book of Sanders, Verhulst and Murdock, 2007)

Theorem (Perko)

For a smooth $f : \mathbb{R}^D \times \mathbb{T}^d \rightarrow \mathbb{R}^D$ and a vector $\omega \in \mathbb{R}^d$ such that for all $\mathbf{k} \in \mathbb{Z}^d$, $|\mathbf{k} \cdot \omega| \geq c|\mathbf{k}|^{-\nu}$, consider the ODE

$$y'(t) = \varepsilon f(y(t), t\omega), \quad y(0) = y_0.$$

Then for any $N > 1$, there exist:

- (i) a map $U_N = id + \dots + \varepsilon^{N-1} u_{N-1}$ from $\mathbb{R}^D \times \mathbb{T}^d$ to \mathbb{R}^D ,
- (ii) a vector field $\varepsilon F_1 + \dots + \varepsilon^N F_N$,
- (iii) a constant C_N ,

such that the solution Y of the autonomous ODE

$$Y' = \varepsilon F_1(Y) + \dots + \varepsilon^N F_N(Y), \quad U_N(Y(0), \mathbf{0}) = y_0,$$

satisfies

$$\|y(t) - U_N(Y(t), t\omega)\| \leq C_N \varepsilon^N \text{ for } t \leq L/\varepsilon.$$

The functions u_i (and thus F_i) are **not unique** except for F_1

$$\tilde{F}_1(Y) = f(y, \theta),$$

$$\tilde{F}_j(Y, \theta) = \sum_{k=1}^{j-1} \left[\frac{1}{k!} \sum_{i_1+\dots+i_k=j-1} \frac{\partial^k f}{\partial y^k} (u_{i_1}, \dots, u_{i_k}) - \frac{\partial u_k}{\partial Y} F_{j-k} \right],$$

$$F_j(Y) = \frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} \tilde{F}_j(Y, \theta) d\theta,$$

$$\omega \cdot \frac{\partial u_j}{\partial \theta}(Y, \theta) = \tilde{F}_j(Y, \theta) - F_j(Y).$$

- $d = 1$: We can impose $u_j(Y, 0) = 0$, this is **stroboscopic** or averaging, in the sense that $U(Y, 2k\pi) = Y$;
- $d > 1$: The choice $\int_{\mathbb{T}^d} u_j(Y, \theta) d\theta = 0$ is the **one prescribed** in Perko's theorem.

Why do we consider stroboscopic averaging using B-series rather than anything else?

- Quasi-stroboscopic averaging is **intrinsically geometric**.
- B-series allow the derivation of **fully explicit expansions**, a very useful feature for the analysis of numerical methods.
- Stroboscopic averaging has proved to be the portal for new numerical schemes in the mono-frequency situation and it is expected that **methods can be developed based on quasi-stroboscopic averaging**.

Outline

- 1 Highly-oscillatory non-autonomous problems
- 2 High-order averaging in quasi-periodic systems
- 3 Expansion of the highly-oscillatory solution: naive approach
- 4 Expansion of the highly-oscillatory solution: B-series approach
- 5 A transport equation for the B-series coefficients
- 6 Quasi-stroboscopic averaging with B-series
- 7 Geometric properties of quasi-stroboscopic averaging
- 8 Ongoing work and perspectives

Starting point of our approach

The exact oscillatory solution is obtained in three steps:

1 First step: Integral formulation

$$y(t) = y_0 + \varepsilon \int_0^t f(y(s), s\omega) ds$$

2 Second step: Fourier expansion of the vector field

$$y(t) = y_0 + \varepsilon \int_0^t \sum_{\mathbf{k} \in \mathbb{Z}^d} e^{is(\mathbf{k} \cdot \omega)} f_{\mathbf{k}}(y(s)) ds$$

3 Third step: insertion à la Picard and Taylor expansion

$$\begin{aligned} y(t) &= \dots + \varepsilon \sum_{\mathbf{k}} \left(\int_0^t e^{is(\mathbf{k} \cdot \omega)} ds \right) f_{\mathbf{k}}(y_0) + \mathcal{O}(\varepsilon^2) \\ &= \dots + \varepsilon^2 \sum_{\mathbf{k}, \mathbf{l}} \left(\int_0^t \int_0^{s_1} e^{is_1(\mathbf{k} \cdot \omega) + s_2(\mathbf{l} \cdot \omega)} ds_1 ds_2 \right) (f'_{\mathbf{k}} f_{\mathbf{l}})(y_0) + \mathcal{O}(\varepsilon^3) \end{aligned}$$

:

Starting point of our approach

The procedure may be pursued iteratively with increasing complexity. It involves two ingredients of different nature:

- 1 **Problem-dependent elements:** so-called *elementary differentials* based on the Fourier coefficients of f at y_0

$$f_{\mathbf{k}}(y_0), \quad f'_{\mathbf{k}}(y_0)f_{\mathbf{l}}(y_0), \quad f''_{\mathbf{k}}(y_0)(f_{\mathbf{l}}(y_0), f_{\mathbf{m}}(y_0)), \dots$$

- 2 **Universal elements:** time-dependent coefficients

$$\int_0^t e^{is(\mathbf{k}\cdot\omega)} ds, \quad \int_0^t \int_0^{s_1} e^{is_1(\mathbf{k}\cdot\omega) + s_2(\mathbf{l}\cdot\omega)} ds_1 ds_2, \quad \dots$$

depending only on ω

Outline

- 1 Highly-oscillatory non-autonomous problems
- 2 High-order averaging in quasi-periodic systems
- 3 Expansion of the highly-oscillatory solution: naive approach
- 4 **Expansion of the highly-oscillatory solution: B-series approach**
- 5 A transport equation for the B-series coefficients
- 6 Quasi-stroboscopic averaging with B-series
- 7 Geometric properties of quasi-stroboscopic averaging
- 8 Ongoing work and perspectives

Mode-coloured B-series

The set \mathcal{T} of *mode-coloured* trees is defined recursively by:

- 1 For all $\mathbf{k} \in \mathbb{Z}^d$, $\textcircled{\mathbf{k}}$ belongs to \mathcal{T} ;
- 2 If u_1, \dots, u_n are n trees of \mathcal{T} , then, the tree

$$u = [u_1, \dots, u_n]_{\mathbf{k}}$$

obtained by connecting their roots to a new root with multi-index $\mathbf{k} \in \mathbb{Z}^d$, belongs to \mathcal{T} .

The order $|u|$ of a tree $u \in \mathcal{T}$ is its number of nodes.

Elementary differentials are defined recursively by the formulae:

$$1 \quad \mathcal{F}_{\langle k \rangle}(y_0) = f_k(y_0)$$

$$2 \quad \mathcal{F}_{[u_1, \dots, u_n]_k}(y_0) = \frac{\partial^n f_k}{\partial y^n}(y_0) \left(\mathcal{F}_{u_1}(y_0), \dots, \mathcal{F}_{u_n}(y_0) \right)$$

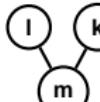
u				
$ u $	1	2	3	3
$\mathcal{F}_u(y)$	$f_k(y)$	$f'_l(y)f_k(y)$	$f'_{\mathbf{m}}(y)f'_l(y)f_k(y)$	$f''_{\mathbf{m}}(y)(f_l(y), f_k(y))$

Figure: Trees of orders ≤ 3 and associated elementary differentials

Mode-coloured B-series are power series indexed by trees:

$$B(\delta, y) = \delta_\emptyset y + \sum_{u \in \mathcal{T}} \frac{\varepsilon^{|u|}}{\sigma_u} \delta_u \mathcal{F}_u(y)$$

where σ is the symmetry factor and $\alpha \in \mathbb{C}^{\mathcal{T} \cup \{\emptyset\}}$.

Plugging $y(t) = B(\alpha(t), y_0)$ into the integral formulation leads to:

$$\forall \mathbf{k} \in \mathbb{Z}^d, \quad \alpha_{\bigcirclearrowleft \mathbf{k}}(t) = \int_0^t e^{is\mathbf{k} \cdot \omega} ds$$

$$\forall u = [u_1, \dots, u_n]_{\mathbf{k}}, \quad \alpha_u(t) = \int_0^t e^{is(\mathbf{k} \cdot \omega)} \alpha_{u_1}(s) \cdots \alpha_{u_n}(s) ds.$$

A more algebraic view (I)

- Given two B-series $B(\delta, y)$ with $\delta_\emptyset = 1$ and $B(\eta, y)$, their composition

$$B(\eta, B(\delta, y))$$

is a B-series with coefficients $\alpha * \beta \in \mathbb{C}^{\mathcal{T} \cup \{\emptyset\}}$.

- This law endows

$$\mathcal{G} := \{\delta \in \mathbb{C}^{\mathcal{T} \cup \{\emptyset\}} : \delta_\emptyset = 1\}$$

with a Lie-group structure, with neutral element $\mathbb{1}$.

- The corresponding Lie-algebra is

$$\begin{aligned}\mathfrak{g} &= \{\beta \in \mathbb{C}^{\mathcal{T} \cup \{\emptyset\}} : \beta_\emptyset = 0\} \\ &= \left\{ \frac{d\alpha(t)}{dt} \middle|_{t=0} \text{ for } \alpha(t) \in \mathcal{G} \text{ with } \alpha(0) = \mathbb{1} \right\}\end{aligned}$$

Our first task is to rewrite the vector field itself as a B-series

$$\varepsilon \sum_{\mathbf{k} \in \mathbb{Z}^d} e^{i(\mathbf{k} \cdot \theta)} f_k(y) = B(\beta(\theta), y) = \sum_{u \in \mathcal{T}} \frac{\varepsilon^{|u|}}{\sigma_u} \beta_u(\theta) \mathcal{F}_u(y)$$

with coefficients $\beta_u(\theta)$ defined for $u \in \mathcal{T} \cup \{\emptyset\}$ as follows:

$$\beta_u(\theta) = \begin{cases} e^{i(\mathbf{k} \cdot \theta)} & \text{if } u = \bigcirc_{\mathbf{k}} \text{ for some } \mathbf{k} \in \mathbb{Z}^d, \\ 0 & \text{otherwise.} \end{cases}$$

Writing the IVP in terms of B-series, we obtain

$$\begin{aligned} \frac{d}{dt} B(\alpha(t), y_0) &= B(\alpha(t) * \beta(t\omega), y_0), \\ B(\alpha(0), y_0) &= B(\mathbf{1}, y_0), \end{aligned}$$

$\alpha(t)$ as the solution of an initial value problem

Consequence: α is a curve in \mathcal{G} satisfying the IVP

$$\begin{cases} \frac{d}{dt}\alpha(t) &= \alpha(t) * \beta(t\omega), \\ \alpha(0) &= \mathbf{1} \end{cases}$$

Since $\beta_u(\theta) = 0$ whenever $|u| \neq 1$, we obtain for $u = [u_1 \dots u_n]_{\mathbf{k}}$

$$\frac{d\alpha_u(t)}{dt} = \beta_{\mathbf{k}}(t\omega) \alpha_{u_1}(t) \dots \alpha_{u_n}(t)$$

and after integration

$$\alpha_u(t) = \int_0^t e^{is(\mathbf{k} \cdot \omega)} \alpha_{u_1}(s) \dots \alpha_{u_n}(s) ds.$$

$\alpha(t)$ as the solution of an initial value problem

u	$\alpha_u(t)$
	$\int_0^t e^{is_1(\mathbf{k} \cdot \omega)} ds_1$
	$\int_0^t \int_0^{s_1} e^{i(s_1 \mathbf{k} + s_2 \mathbf{l}) \cdot \omega} ds_1 ds_2$
	$\int_0^t \int_0^{s_1} \int_0^{s_2} e^{i(s_1 \mathbf{k} + s_2 \mathbf{l} + s_3 \mathbf{m}) \cdot \omega} ds_1 ds_2 ds_3$
	$\int_0^t e^{is_1(\mathbf{m} \cdot \omega)} \left(\int_0^{s_1} e^{is_2(\mathbf{l} \cdot \omega)} ds_2 \int_0^{s_1} e^{is_3(\mathbf{k} \cdot \omega)} ds_3 \right) ds_1$

Figure: First coefficients of the oscillatory B-series expansion

Outline

- 1 Highly-oscillatory non-autonomous problems
- 2 High-order averaging in quasi-periodic systems
- 3 Expansion of the highly-oscillatory solution: naive approach
- 4 Expansion of the highly-oscillatory solution: B-series approach
- 5 A transport equation for the B-series coefficients
- 6 Quasi-stroboscopic averaging with B-series
- 7 Geometric properties of quasi-stroboscopic averaging
- 8 Ongoing work and perspectives

The density argument

Lemma

Assume that ω is non-resonant and consider $w \in \mathbb{C}^{\mathbb{R} \times \mathbb{T}^d}$ a continuous function, such that for all θ , $w(\cdot, \theta)$ is polynomial. If for all t , $w(t, t\omega) = 0$, then for all (t, θ) , $w(t, \theta) = 0$.

Consequence: for all $u \in \mathcal{T}$, $\alpha_u(t)$ is of the form

$$\alpha_u(t) = P_u(t, e^{it\omega_1}, \dots, e^{it\omega_d}, e^{-it\omega_1}, \dots, e^{-it\omega_d})$$

where $P_u \in \mathbb{C}[X, Z_1, \dots, Z_d, Z_1^{-1}, \dots, Z_d^{-1}]$ is defined **uniquely**.

Consider $u = \begin{smallmatrix} \mathbf{k} \\ \mathbf{l} \end{smallmatrix}$ with $\mathbf{l} \neq -\mathbf{k}$, $\mathbf{k}, \mathbf{l} \neq 0$: then

$$\alpha_u = \frac{-(\mathbf{k} \cdot \omega) + ((\mathbf{l} + \mathbf{k}) \cdot \omega) e^{it(\mathbf{l} \cdot \omega)} - (\mathbf{l} \cdot \omega) e^{it((\mathbf{l} + \mathbf{k}) \cdot \omega)}}{(\mathbf{k} \cdot \omega)(\mathbf{l} \cdot \omega)((\mathbf{l} + \mathbf{k}) \cdot \omega)}$$

$$P_u = \frac{-(\mathbf{k} \cdot \omega) + ((\mathbf{l} + \mathbf{k}) \cdot \omega) \prod_{i=1}^d Z_i^{\mathbf{l}_i} - (\mathbf{l} \cdot \omega) \prod_{i=1}^d Z_i^{\mathbf{l}_i + \mathbf{k}_i}}{(\mathbf{k} \cdot \omega)(\mathbf{l} \cdot \omega)((\mathbf{l} + \mathbf{k}) \cdot \omega)}$$

Formulating the ODE as a transport PDE

We can finally write $\alpha_u(t) = \gamma_u(t, \theta)|_{\theta=t\omega}$ where

$$\gamma_u(t, \theta) = P_u(t, e^{i\theta_1}, \dots, e^{i\theta_d}, e^{-i\theta_1}, \dots, e^{-i\theta_d})$$

is a function of $\mathbb{C}^{\mathbb{R} \times \mathbb{T}^d}$.

The chain rule and the density argument then show that:

For all $(t, \theta) \in \mathbb{R} \times \mathbb{T}^d$

$$\begin{aligned}\partial_t \gamma(t, \theta) + \omega \cdot \nabla_\theta \gamma(t, \theta) &= \gamma(t, \theta) * \beta(\theta) \\ \gamma(0, \mathbf{0}) &= \mathbf{1}\end{aligned}$$

Uniqueness of the solution

In full generality, for any function $\chi(\theta) \in \mathcal{G}^{\mathbb{T}^d}$ such that $\chi(\mathbf{0}) = \mathbf{1}$,

$$\gamma(t, \theta) = \chi(\theta - t\omega) + \int_0^t \gamma(s, \theta + (s - t)\omega) * \beta(\theta + (s - t)\omega) ds$$

is solution of the transport equation.

Definition

A coefficient map $\delta \in \mathcal{G}^{\mathbb{R} \times \mathbb{T}^d}$ is said to be **polynomial** if

$$\forall u \in \mathcal{T}, \quad \delta_u(t, \theta) = P_u(t, e^{i\theta_1}, \dots, e^{i\theta_d}, e^{-i\theta_1}, \dots, e^{-i\theta_d})$$

with $P_u \in \mathbb{C}[Z_0, Z_1, \dots, Z_d, Z_1^{-1}, \dots, Z_d^{-1}]$.

Theorem

There exists a **unique polynomial** solution $\gamma \in \mathcal{G}^{\mathbb{R} \times \mathbb{T}^d}$ of

$$\begin{aligned} \partial_t \gamma(t, \theta) + \omega \cdot \nabla_\theta \gamma(t, \theta) &= \gamma(t, \theta) * \beta(\theta) \\ \gamma(0, \mathbf{0}) &= \mathbf{1} \end{aligned}$$

A fundamental consequence

Theorem

For all $t, t' \in \mathbb{R}$ and all $\theta \in \mathbb{T}^d$,

$$\gamma(t + t', \theta) = \gamma(t', 0) * \gamma(t, \theta).$$

Proof: Let t' be fixed. By right-linearity and associativity of the convolution product $*$:

$$\begin{aligned} & (\partial_t + \omega \cdot \partial_\theta) \left(\gamma(t', \mathbf{0})^{-1} * \gamma(t' + t, \theta) \right) = \\ & \gamma(t', \mathbf{0})^{-1} * (\partial_t + \omega \cdot \partial_\theta) \gamma(t' + t, \theta) \\ & \gamma(t', \mathbf{0})^{-1} * \gamma(t' + t, \theta) * \beta(\theta) \end{aligned}$$

Hence, $\gamma(t', \mathbf{0})^{-1} * \gamma(t' + t, \theta)$ satisfies the transport equation with

$$\gamma(t', \mathbf{0})^{-1} * \gamma(t', \mathbf{0}) = \mathbf{1}$$

Outline

- 1 Highly-oscillatory non-autonomous problems
- 2 High-order averaging in quasi-periodic systems
- 3 Expansion of the highly-oscillatory solution: naive approach
- 4 Expansion of the highly-oscillatory solution: B-series approach
- 5 A transport equation for the B-series coefficients
- 6 Quasi-stroboscopic averaging with B-series
- 7 Geometric properties of quasi-stroboscopic averaging
- 8 Ongoing work and perspectives

Main ingredients of the quasi-stroboscopic procedure: $\bar{\alpha}$, $\bar{\beta}$ and κ **Reminder:** $\gamma(t + t', \theta) = \gamma(t', 0) * \gamma(t, \theta)$

- **Averaged solution:** $\bar{\alpha} \in \mathcal{G}^{\mathbb{R}}$ is the coefficient map obtained by **freezing** the oscillations in α :

$$\bar{\alpha}(t) = \gamma(t, \mathbf{0})$$

Previous theorem shows $\bar{\alpha}(t)$ is a 1-parameter group.

- **Averaged vector field:** By standard results on ODEs, $\bar{\alpha}(t)$ satisfies the *autonomous* ODE

$$\frac{d}{dt} \bar{\alpha}(t) = \bar{\alpha}(t) * \bar{\beta} \quad \text{with} \quad \bar{\beta} = \frac{d}{dt} \bar{\alpha}(t) \Big|_{t=0} = \frac{\partial}{\partial t} \gamma(t, \mathbf{0}) \Big|_{t=0}$$

- **Change of variables:** Previous theorem then shows that

$$\alpha(t) = \bar{\alpha}(t) * \kappa(t\omega) \quad \text{with} \quad \kappa(\theta) = \gamma(0, \theta)$$

Quasi-stroboscopic averaging: a schematic view

$$\left\{ \begin{array}{l} \frac{dy(t)}{dt} = \varepsilon f(y(t), t\omega), \\ y(0) = y_0 \end{array} \right. \quad \xleftarrow[\varepsilon f(y, \theta) = B(\beta(\theta), y)]{y(t) = B(\alpha(t), y_0)} \quad \left\{ \begin{array}{l} \frac{d\alpha(t)}{dt} = \alpha(t) * \beta(t\omega), \\ \alpha(0) = \mathbb{1} \end{array} \right.$$

$$y(t) = U(Y(t), t\omega) \quad \updownarrow \quad \updownarrow \quad \alpha(t) = \bar{\alpha}(t) * \kappa(t\omega)$$

$$\left\{ \begin{array}{l} \frac{dY(t)}{dt} = \varepsilon F(Y(t)), \\ Y(0) = Y_0 = y_0 \end{array} \right. \quad \xleftarrow[\varepsilon F(Y) = B(\bar{\beta}, Y)]{Y(t) = B(\bar{\alpha}(t), Y_0)} \quad \left\{ \begin{array}{l} \frac{d\bar{\alpha}(t)}{dt} = \bar{\alpha}(t) * \bar{\beta}, \\ \bar{\alpha}(0) = \mathbb{1} \end{array} \right.$$

Figure: Quasi-stroboscopic averaging in terms of B-series

Statement of the result

Theorem

The solution of

$$y'(t) = \varepsilon f(y(t), t\omega), \quad y(0) = y_0$$

may be written as $y(t) = U(Y(t), t\omega)$ where

$$U(Y, \theta) = Y + \sum_{u \in \mathcal{T}} \frac{\varepsilon^{|u|}}{\sigma_u} \kappa_u(\theta) \mathcal{F}_u(Y)$$

and $Y(t)$ is the solution of the (averaged) autonomous IVP

$$Y'(t) = \varepsilon F(Y), \quad Y(0) = y_0$$

with

$$\varepsilon F(Y) := B(\bar{\beta}, Y) = \sum_{u \in \mathcal{T}} \frac{\varepsilon^{|u|}}{\sigma_u} \bar{\beta}_u \mathcal{F}_u(Y)$$

Outline

- 1 Highly-oscillatory non-autonomous problems
- 2 High-order averaging in quasi-periodic systems
- 3 Expansion of the highly-oscillatory solution: naive approach
- 4 Expansion of the highly-oscillatory solution: B-series approach
- 5 A transport equation for the B-series coefficients
- 6 Quasi-stroboscopic averaging with B-series
- 7 Geometric properties of quasi-stroboscopic averaging
- 8 Ongoing work and perspectives

The subgroup $\hat{\mathcal{G}} \subset \mathcal{G}$ and the sub-algebra $\hat{\mathfrak{g}} \subset \mathfrak{g}$

Consider the subgroup $\hat{\mathcal{G}} \subset \mathcal{G}$ of coefficient maps δ such that

$$\forall (u, v, w) \in \mathcal{T}^3, \quad \delta_{u \circ v} + \delta_{v \circ u} = \delta_u \delta_v$$

$$\delta_{(u \circ v) \circ w} + \delta_{(v \circ u) \circ w} + \delta_{(w \circ u) \circ v} = \delta_u \delta_v \delta_w$$

where \circ denotes the Butcher product (grafting).

Remark

$\hat{\mathcal{G}}$ is the group of flows that preserve cubic polynomial invariants and/or the group of volume-preserving flows.

We denote the corresponding Lie subalgebra $\hat{\mathfrak{g}} \subset \mathfrak{g}$.

B-series as series of Lie-derivative indexed by words for $\delta \in \hat{\mathcal{G}} \cup \hat{\mathfrak{g}}$

Previous relations allow the rewriting of B-series as series indexed by words $\mathbf{k}_1 \cdots \mathbf{k}_r$ where the $\mathbf{k}_i \in \mathbb{Z}^d$:

$$\forall \delta \in \hat{\mathcal{G}}, \quad B(\delta, y) = y + \sum_{r=1}^{\infty} \varepsilon^r \sum_{\mathbf{k}_1, \dots, \mathbf{k}_r \in \mathbb{Z}^d} \delta_{\mathbf{k}_1 \dots \mathbf{k}_r} f_{\mathbf{k}_1 \dots \mathbf{k}_r}$$

where:

- $\delta_{\mathbf{k}_1 \dots \mathbf{k}_r} = \delta_{u_{\mathbf{k}_1 \dots \mathbf{k}_r}}$ if $u_{\mathbf{k}_1 \dots \mathbf{k}_r}$ is defined by

$$u_{\mathbf{k}_1} = \bigcirc_{\mathbf{k}_1} \quad u_{\mathbf{k}_1 \dots \mathbf{k}_r} = [u_{\mathbf{k}_1 \dots \mathbf{k}_{r-1}}]_{\mathbf{k}_r}$$

- $f_{\mathbf{k}_1 \dots \mathbf{k}_r}$ is defined by

$$f_{\mathbf{k}_1 \dots \mathbf{k}_r}(y) = \partial_y f_{\mathbf{k}_1 \dots \mathbf{k}_{r-1}}(y) f_{\mathbf{k}_r}(y)$$

B-series as series of Lie-brackets indexed by words for $\delta \in \hat{\mathfrak{g}}$

The Dynkin-Specht-Wever theorem finally enables to write:

$$\forall \beta \in \hat{\mathfrak{g}}, B(\beta, y) = \sum_{r=1}^{\infty} \frac{\varepsilon^r}{r} \sum_{\mathbf{k}_1, \dots, \mathbf{k}_r \in \mathbb{Z}^d} \beta_{\mathbf{k}_1 \dots \mathbf{k}_r} [[\dots [f_{\mathbf{k}_1}, f_{\mathbf{k}_2}], f_{\mathbf{k}_3}], \dots], f_{\mathbf{k}_r}](y)$$

where, for any two vector fields g and h

$$[g, h](y) = h'(y)g(y) - g'(y)h(y)$$

Since $\gamma_u(t, t\omega) \in \hat{\mathcal{G}}$, it follows:

$$\forall t, \gamma_u(t, t\omega) \in \hat{\mathcal{G}} \xrightarrow{\text{density}} \forall (t, \theta), \gamma_u(t, \theta) \in \hat{\mathcal{G}} \implies \forall t, \gamma_u(t, \mathbf{0}) \in \hat{\mathcal{G}}$$

so that

$$\bar{\beta} = \left. \frac{d\gamma(t, \mathbf{0})}{dt} \right|_{t=0} \in \hat{\mathfrak{g}}$$

Theorem

1 *The quasi-stroboscopic averaged equation can be rewritten as:*

$$\frac{d}{dt} Y = \sum_{r=1}^r \sum_{\mathbf{k}_1, \dots, \mathbf{k}_r \in \mathbb{Z}^d} \frac{\varepsilon^r}{r} \bar{\beta}_{\mathbf{k}_1 \dots \mathbf{k}_r} [[\dots [f_{\mathbf{k}_1}, f_{\mathbf{k}_2}], f_{\mathbf{k}_3}], \dots], f_{\mathbf{k}_r}](Y)$$

2 *If the original vector field $f(y, t\omega)$ is divergence free, then so is the quasi-stroboscopic averaged vector field.*

3 *If the original vector field $f(y, t\omega)$ is Hamiltonian with $f_{\mathbf{k}} = J^{-1} \nabla H_{\mathbf{k}}$, then so is the quasi-stroboscopic averaged vector field with Hamiltonian*

$$\bar{H} = \sum_{r=1}^r \sum_{\mathbf{k}_1, \dots, \mathbf{k}_r \in \mathbb{Z}^d} \frac{\varepsilon^r}{r} \bar{\beta}_{\mathbf{k}_1 \dots \mathbf{k}_r} \{ \dots \{ H_{\mathbf{k}_1}, H_{\mathbf{k}_2} \}, H_{\mathbf{k}_3} \}, \dots \}, H_{\mathbf{k}_r} \}$$

Outline

- 1 Highly-oscillatory non-autonomous problems
- 2 High-order averaging in quasi-periodic systems
- 3 Expansion of the highly-oscillatory solution: naive approach
- 4 Expansion of the highly-oscillatory solution: B-series approach
- 5 A transport equation for the B-series coefficients
- 6 Quasi-stroboscopic averaging with B-series
- 7 Geometric properties of quasi-stroboscopic averaging
- 8 Ongoing work and perspectives

Ongoing work:

- Stroboscopic averaging for the nonlinear Schrödinger equation (Castella, C. , Méhats and Murua)
- Stroboscopic symplectic composition methods (C., Murua, Wang)

Perspectives:

- Error estimates
- Quasi-stroboscopic numerical methods
- Extension to the wave equation

References

- P. C., J.M. Sanz-Serna and A. Murua, Higher-order averaging, formal series and numerical integration I: B-series, FOCM, 2010.
- M.P. Calvo, P. C., J.M. Sanz-Serna and A. Murua, A stroboscopic numerical method for highly oscillatory problems, submitted.
- M.P. Calvo, P. C., J.M. Sanz-Serna and A. Murua, Numerical experiments with the stroboscopic method, submitted.
- P. C., J.M. Sanz-Serna and A. Murua, Higher-order averaging, formal series and numerical integration II: the multi-frequency case, in preparation.

THANK YOU FOR YOUR ATTENTION