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II. INTRODUCTION



The goal

To formulate a unitary perturbation theory in quantum
mechanics in the spirit of Deprit’s algorithm in classical
Hamiltonian mechanics.

A problem posed to us by Deprit himself around 1992.

On the road, some interesting connections:

matrix mechanics and the dreimännerarbeit
an application of geometric integrators
reducibility in linear differential equations
averaging techniques (talks by Chartier and Murua)



Canonical perturbation theory in Hamiltonian Mechanics

H(q, p, t; ε) = H0(q, p) + εH1(q, p, t) + ε2H2(q, p, t) + · · · ,
with the dynamics of H0 solvable.

One tries to find a symplectic near-identity transformation
(q, p) 7−→ (Q,P) so that the new Hamiltonian K depends
only on P: K (P, t) easy to integrate

Generating function S(q,P, t) = qP + εS2(q,P, t) + · · ·

K (P, t, ε) = K0(P, t) + εK1(P, t) + · · ·

p =
∂S

∂q
= P + ε

∂S2

∂q
+ · · · ; Q =

∂S

∂P
= q + ε

∂S2

∂P
+ · · ·

K = H +
∂S

∂t

Old and new variables ⇒ solve implicit functional equations
to express everything in terms of only the old or only the new
variables.



Deprit algorithm in Classical Mechanics

Modification introduced by Deprit (1969): the symplectic
transformation is given by a generator: a function
w(q, p, ε) = w1 + εw2 + · · · such that the shift by ‘time’ ε
along the trajectories of the ‘Hamiltonian’ w produces the
required transformation (q, p) 7−→ (Q,P)

If x ≡ (q, p), then dx
dε = {x ,w}.

Corresponding to this transformation one has the evolution
operator T such that X ≡ (Q,P) = Tx .



Deprit algorithm in Classical Mechanics

To find T , one introduces the Lie operator L ≡ {w , ·}. Then

dT

dε
= −TL

For non-autonomous systems, w , L and T are explicit
functions of t, and

K = T−1H + T−1

∫ ε

0
dε′T (ε′)

∂w(ε′)

∂ε

Everything is expanded as power series of ε.

Very efficient computational algorithm.

First application: Delaunay theory of the Lunar motion
(1969).

Cary (1981), Lichtenberg & Lieberman (1983)



Delaunay theory

“Delaunay worked at his theory without any assistance, by
hand, for some 20 years continuously; his literal calculations
cover two volumes in quarto of 400 pages each; he alone
proofread them.” (Deprit, Henrard & Rom)

“Deprit and his collaborators linked it to a modern computer
algebra program (MACSYMA) and reproduced Delunay’s
monumental calculations. The dramatic result of this double
checking was that in 20 years of effort Delaunay made only
one mistake —amounting to writing 147− 90 + 9 = 46— at
the 9th order, all errors resulting from its propagation through
other terms.” (Michelotti)



Time-dependent perturbation theory in QM

In QM, the time evolution of a wave function Ψ(t) may
described in terms of the evolution operator

Ψ(t) = U(t)Ψ(t0),

where U(t) is unitary: U†(t) = U−1(t), and verifies

i~U̇(t) = H(t)U(t), U(t0) = I .

Schrödinger equation

If H(t) = H0, then U(t) = exp(−i(t − t0)H0/~).



Time-dependent perturbation theory in QM

Assume that H(t, ε) = H0 + H ′(t, ε) ≡ H0 +
∑∞

n=1 ε
nHn(t).

One factorizes U(t) = exp(−i(t − t0)H0/~)UI (t), where the
unknown operator UI (t) obeys

i~U̇I (t) = HI (t, ε)UI (t), UI (t0) = I

with
HI (t, ε) = e−

i
~H0(t−t0) H ′(t, ε) e

i
~H0(t−t0).

Next we expand UI (t) =
∑

n≥0 ε
nUn(t).

In particular

U0 = I , U1(t) =

∫ t

t0

ds HI (s, ε).

When the series is truncated, the approximation UI is not
unitary.



Comments

Schemes in CM and QM are completely different.

Question: is it possible to formulate a perturbation theory in
QM by following the approach of CM?

Back to 1925 and the birth of Matrix Mechanics: Born,
Heisenberg and Jordan.

Input: classical Hamiltonian mechanics, canonical
transformations, old quantum theory, correspondence
principle.

Output: the first coherent formulation of Quantum Mechanics
(before Schrödinger equation), including time-independent
perturbation theory (but also time-dependent P.T.)



A word of caution...

“If the reader is mystified at what Heisenberg was doing, he or she
is not alone. I have tried several times to read the paper that
Heisenberg wrote on returning from Heligoland, and, although I
think I understand quantum mechanics, I have never understood
Heisenberg’s motivations for the mathematical steps in his paper.
Theoretical physicists in their most successful work tend to play
one of two roles: they are either sages or magicians... It is usually
not difficult to understand the papers of sage-physicists, but the
papers of magician-physicists are often incomprehensible. In this
sense, Heisenberg’s 1925 paper was pure magic.”

Steven Weinberg, Nobel Prize Laureate in Physics



Dreimännerarbeit: Time-independent perturbation theory

Given H = H0 + εH1 + ε2H2 + · · · , assume the problem
defined by H0 has been solved: we have determined Q0 and
P0 such that H0(Q0,P0) is diagonal (but not H(Q0,P0)).

Idea: to find a unitary transformation S (“canonical
transformation”) so that P = S P0S−1, Q = S Q0S−1 and
the matrices P and Q diagonalize K = SH(Q0,P0)S−1.

Perturbative scheme: K = K0 + εK1 + ε2K2 + · · ·

S = I + εS1 + ε2S2 + · · ·
S−1 = I − εS1 + ε2(S2

1 − S2) + · · ·

Then

K0 = H0

Kr = SrH0 − H0Sr + Fr (H0, . . . ,Hr , S1, . . . ,Sr−1)



Dreimännerarbeit: Time-dependent perturbation theory

H(t, ε) = H0 + εH1(t) + ε2H2(t) + · · ·

BHJ: “simple considerations show that the perturbation
formulae ensue from those cited earlier on replacing every
term of the form H0Sr − SrH0 by”

H0Sr − SrH0 − i~
∂Sr

∂t

another magic sentence

Same results as standard theory



Modern approach

BHJ time-independent perturbation theory can be found in
(not so) many textbooks on quantum mechanics: Tomonaga,
Wu, Finkelstein, Messiah,...

Time-dependent formalism almost completely forgotten.

However,

In the mid-1990s, Scherer: “Quantum Averaging”
2000, Daens et al.
2004, Aniello

a revival of this approach, with interesting results and
applications.

Serious limitations: the theory is not unitary; only the first
orders have been explicitly obtained



III. OUR TREATMENT



Features not shared by previous schemes

The formalism is unitary by construction at any order

It is computationally well adapted (high order can be
achieved)

Flexible treatment: it can be applied to any linear differential
equation

It provides a natural connection with BHJ formalism and
standard perturbation theory in QM



The problem

Solve the Schrödinger equation for the evolution operator U(t):

i~U̇ = H(t, ε)U, U(t0) = I (1)

where
H(t, ε) = H0 + εH1(t) + ε2H2(t) + · · ·

and the dynamics corresponding to H0 (time-independent) can be
obtained, i.e., we have determined

UH0(t, t0) = exp(−i(t − t0)H0/~)



The procedure

We look for a unitary transformation T (t, ε) such that the
transformed system

i~U̇K = K (t, ε)UK , UK (t0) = I (2)

is easier to solve than the original equation i~U̇ = H(t, ε)U.

We try to determine T (t, ε) as a unitary near-identity
transformation, i.e.,

T †(t, ε) = T−1(t, ε), T (t, ε) = I +O(ε).

Connection between U(t, t0) and UK (t, t0) (change of
picture):

U(t, t0) = T (t, ε)UK (t, t0)T †(t0, ε)



The transformation

It follows that

K = T †HT + i~
∂T †

∂t
T (3)

(the (t, ε) dependency has been omitted for clarity)

Two (equivalent) options guaranteeing that T is unitary:

Introduce S such that T (t, ε) = exp(S(t, ε))
Introduce a skew-Hermitian operator L(t, ε) (the generator)
such that T (t, ε) is the solution of the operator differential
equation

∂T

∂ε
= −T L, T (t, ε = 0) = I (4)

This is precisely Deprit’s approach in classical mechanics

Eq. (4) is a differential equation in the ‘time’ variable ε, the
perturbation parameter.



The transformation

We follow the second approach.

L(t, ε) and T (t, ε) have to be determined.

From now on, the formalism is expressed in terms of L(t, ε)
(the generator of the unitary transformation)

Once L(t, ε) is obtained, we “only” have to solve the equation
∂T
∂ε = −T L to construct the transformation T .

It is worth noticing that

∂T †

∂ε
= L T †, T †(t, ε = 0) = I (5)

so that we can write T †(t, ε) = eΩ(t,ε) and get Ω(t, ε) (for
instance, with the Magnus expansion)



The formalism

Deriving the relation K = T †HT + i~∂T †∂t T with respect to ε

and taking into account ∂T
∂ε = −T L we arrive at

∂K

∂ε
= [L,K ] + T †

∂H

∂ε
T + i~

∂L

∂t
(6)

This is the equation we work with in the following.

It is then clear that T = e−Ω and thus

T †
∂H

∂ε
T = eΩ∂H

∂ε
e−Ω = eadΩ

∂H

∂ε
=
∞∑
n=0

1

n!
adnΩ

∂H

∂ε



The formalism

In consequence

∂K

∂ε
= [L,K ] + eadΩ

∂H

∂ε
+ i~

∂L

∂t
(7)

an equation formulated only in terms of L, H and K , easier to
handle than (6).

Recall: We want to find a unitary transformation T generated
by L such that i~U̇K = KUK is easier to solve than the
original equation i~U̇ = HU.

Three problems here:
1 Choose K .
2 Compute L.
3 Construct T .

It turns out that problems 1 and 2 can be solved
perturbatively with (7), whereas 3 is solved independently.



Perturbative scheme

Given
H(t, ε) = H0 +

∑
n≥1

εnHn(t)

we introduce the series expansions

K (t, ε) =
∞∑
n=0

εnKn(t), L(t, ε) =
∞∑
n=0

εnLn+1(t)

Then Ω(t, ε) in T = exp(−Ω) can be determined
algorithmically as a power series in ε.

In fact, we can use the results already obtained when
designing geometric integrators from the Magnus expansion.

By applying typical recurrences for the Magnus expansion
applied to ∂T †

∂ε = LT † with L = L1 + εL2 + · · · we get



Perturbative scheme

T †(t, ε) = eΩ(t,ε), Ω(t, ε) =
∞∑
n=1

εnvn(t) (8)

with

v1 = L1, v2 =
1

2
L2, v3 =

1

3
L3 −

1

12
[L1, L2]

v4 =
1

4
L4 −

1

12
[L1, L3]

v5 =
1

5
L5 −

3

40
[L1, L4]− 1

60
[L2, L3] +

1

360
[L1, [L1, L3]]

− 1

240
[L2, [L1, L2]] +

1

720
[L1, [L1, [L1, L2]]]

Thus, we can construct T once L is determined (Problem 3
solved).



On the other hand,

eadΩ
∂H

∂ε
=
∞∑
n=0

εnwn(t)

with

w0 = H1

w1 = 2H2 + [L1,H1]

w2 = 3H3 + 2[L1,H2] +
1

2
[L2,H1] +

1

2
[L1, [L1,H1]]

w3 = 4H4 +
1

12

(
[H1, [L1, L2]] + 2[L1, [L1, [L1,H1]]]

+12[L1, [L1,H2]] + 3[L1, [L2,H1]] + 36[L1,H3]

+3[L2, [L1,H1]] + 12[L2,H2] + 4[L3,H1]
)



Homological equation

Finally, by substituting into

∂K

∂ε
= [L,K ] + eadΩ

∂H

∂ε
+ i~

∂L

∂t

we arrive at

K0 = H0 (9)

i~
∂Ln

∂t
+ [Ln,H0] = n Kn − F̃n, n = 1, 2, . . .

with

F̃n =
n−1∑
j=1

[Ln−j ,Kj ] + wn−1

Next step: propose a suitable Kn and solve (9) to get Ln.

Notice that the expressions for vj and wj have to be computed
only once.



Choosing Kn(t)

Now we have to choose appropriately K =
∑

n≥0 ε
nKn.

Simplest option: K = H0. Then

Kn = 0, n ≥ 1

In that case UK (t) = exp
(
− iH0(t − t0)/~

)
and

U(t) = T (t, ε) e−
i
~H0(t−t0) = e−Ω(t,ε) e−

i
~H0(t−t0).

The whole ε dependency is contained in T .

Unitary scheme.



Choosing Kn(t)

Another possibility: suppose H0 has a pure non-degenerate
point spectrum. In that case we can choose Kn diagonal, and

UK (t) = e
− i

~
∑

n≥0 ε
n
∫ t
t0
Kn(u)du

More general situation: The solution of i~U̇K = KUK is

UK (t) = e
− i

~
∫ t
t0
K(u)du ⇐⇒

[∫ t

t0

K (u)du,K (t)

]
= 0.

This holds in particular if one takes Kn(t) such that

[K0,Kn(t)] = 0, [Km(t),Kn(t)] = 0 ∀ m, n ≥ 1

Finally

U(t) = e−Ω(t,ε) e
− i

~
∫ t
t0
K(u)du

Notice that both T and UK are series in ε which have to be
truncated at a given order εm.



Determining Ln(t)

One Kn is chosen, we have to compute Ln solution of

i~
∂Ln

∂t
+ [Ln,H0] = n Kn − F̃n, n ≥ 1

Formal solution (t0 = 0):

Ln(t) = exp(−itH0/~) Ln(0) exp(itH0/~)

− i

~

∫ t

0
du exp

(
− i(t − u)H0/~

)
(10)(

nKn(u)− F̃n(u)
)

exp
(
i(t − u)H0/~

)
,

Very often we will take Ln(0) = 0:

Ln(t) = − i

~

∫ t

0
du e−i(t−u)H0/~

(
nKn(u)− F̃n(u)

)
ei(t−u)H0/~



BHJ perturbation theory

We recover the BHJ perturbation theory (and therefore the
standard one) by

Taking K = H0

Expanding T (t, ε) = e−Ω(t,ε) in power series of ε (non
unitary!)

At first order in ε,

U(t) = (I − εL1(t)) e−
i
~H0t

L1(t) =
i

~

∫ t

0
du e−i(t−u)H0/~ H1(u) ei(t−u)H0/~

Then

U(t) = e−
i
~H0t

(
I − ε i

~

∫ t

0
HI (u)du

)
where

HI (u) = eiuH0/~ H1(u) e−iuH0/~

This is precisely the result achieved by standard perturbation
theory in the interaction picture defined by H0.



Time-independent perturbation

The standard theory is also reproduced when H 6= H(t).

Then T is chosen as time-independent,

K (ε) = eΩ(ε) H(ε) e−Ω(ε)

and K (ε) is taken so that [H0,K ] = 0. In this way H0 and K
can be simultaneously diagonalized.

Equations to solve:

[Ln,H0] = n Kn − F̃n, [Kn,H0] = 0, n ≥ 1.

Solution (averaging):

Kn =
1

n
lim
τ→∞

1

τ

∫ τ

0
du e−

i
~H0u F̃n e

i
~H0u

Ln =
i

~
lim
τ→∞

1

τ

∫ τ

0
dt

∫ t

0
ds
(
e−

i
~H0s F̃n e

i
~H0s − n Kn

)



IV. AN EXAMPLE



An example from NMR

Hamiltonian

H(t) =
1

2
~ω0σ3 + ε(σ1 cosωt + σ2 sinωt)

Exact solution of i~U̇ = H(t)U, U(0) = I :

U(t) = e−
i
2
ωtσ3 e−it(

1
2

(ω0−ω)σ3+ ε
~σ1)

Exact transition probability between states 1 and 2:

|U21(t)|2 =

(
2ε

ω′
sin

ω′t

2

)2

with ω′ =
√

(ω0 − ω)2 + 4ε2/~2.



Perturbative treatment

H(t) = H0 + εH1(t) with

H0 =
1

2
~ω0σ3, H1(t) = σ1 cosωt + σ2 sinωt

Previous formalism up to n = 10. Then

K =
10∑
n=0

εnKn(t) ⇒ UK (t) = e−
i
~
∫ t

0 K(u)du

L =
10∑
n=0

εnLn+1(t) ⇒ Ω(t, ε) such that

T (t, ε) = e−Ω(t,ε)

Finally

U(t) ' T (t, ε)UK (t) = e−Ω(t,ε) e−
i
~
∫ t

0 K(u)du

from which we compute the transition probability



First choice: Kn(t) diagonal (β = ε)

n = 4

n = 6

n = 8

n = 10
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8Ω0 ® 1, Ω ® 0.6, Β ® 0.1<



Second choice: K0 = H0, Kn = 0, (n ≥ 1). Then

U(t) ' e−Ω(t,ε) e−
i
~H0t

n = 4

n = 6

n = 8

n = 10

0 2 4 6 8 10 12 14
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t

er
ro

r

8Ω0 ® 1, Ω ® 0.6, Β ® 0.1<



Comparison

K diagonal

K = H_0

n = 10

0 2 4 6 8 10
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t
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8Ω0 ® 1, Ω ® 0.6, Β ® 0.1<



V. FURTHER DEVELOPMENTS



The treatment is formal. It makes sense, then, to analyze
mathematical conditions which guarantee the existence of the
transformation, the existence of solutions for the homological
equation, the convergence of the procedure, etc.

The scheme can be applied to the general linear equation
Ẏ = (A0 + AI (t, ε))Y

Important case: when AI (t, ε) is periodic. Then Floquet
theory applies. Same results as with the Floquet–Magnus
expansion (C., Oteo & Ros, 2001) which is convergent.

Instead of only one transformation, we could consider a
sequence of transformations (à la KAM theory).

Reducibility of linear equations: given Ẏ = (A0 + AI (t, ε))Y ,
when is it possible to construct a transformation T such that
in the new coordinates the coefficient matrix is constant, i.e,
Ẋ = BX , with B constant? (Lyapunov, Erugin, Bogoliubov,
etc.)


