Numerical stroboscopic averaging for ODEs and DAEs

M. P. Calvo Universidad de Valladolid, Spain

Joint work with Ph. Chartier, A. Murua, J. M. Sanz-Serna

I. HIGHLY OSCILLATORY PROBLEMS

Consider the oscillatory IVP

$$\frac{dy}{dt} = f(y, \frac{t}{\epsilon}; \epsilon), \quad t_0 \le t \le t_0 + L, \quad y(t_0) = y_0 \in \mathbb{R}^d,$$

where $f(y,\tau;\epsilon)$ is 2π -periodic in $\tau=t/\epsilon$. (ie f is $2\pi\epsilon$ -prdc in t).

- We are interested in the case $\epsilon \ll 1$, $L = \mathcal{O}(1)$ (solution computed over many periods). Direct numerical solution may be very costly.
- In some applications and for the analysis, system may appear in re-scaled format:

$$\frac{dy}{d\tau} = \epsilon f(y, \tau; \epsilon)$$

with integration interval of length L/ϵ .

• Denote by $\varphi_{t_0,t}$ the solution operator $y_0 \mapsto y(t)$. Note dependence on t_0 and t (system is not autonomous). It satisfies the property

$$\varphi_{t_1,t_2} \circ \varphi_{t_0,t_1} = \varphi_{t_0,t_2}.$$

- $\Psi_{t_0} = \varphi_{t_0,t_0+2\pi\epsilon}$ is the one-period or Poincaré map. Its n-th power satisfies $\Psi^n_{t_0} = \varphi_{t_0,t_0+2\pi n\epsilon}$, ie advances the solution over n periods starting from $t=t_0$.
- Attention restricted to cases where $f = \mathcal{O}(1/\epsilon)$ and Ψ_{t_0} is an $\mathcal{O}(\epsilon)$ perturbation of the identity as $\epsilon \downarrow 0$.
- Next slide shows two situations covered by our approach.

• Left: $f = \mathcal{O}(1)$. Solution undergoes $\mathcal{O}(\epsilon)$ changes along one period of length $\mathcal{O}(\epsilon)$. Right: $f = \mathcal{O}(1/\epsilon)$. Solution changes along one period are $\mathcal{O}(1)$ but $\Psi_{t_0} = Id + \mathcal{O}(\epsilon)$

ullet Changes in solution when t is increased by $2\pi\epsilon$

II. STROBOSCOPIC AVERAGING

- Method of (analytic) averaging. Directly applicable only to situations as in left picture. Try to describe 'smooth' evolution of the system without tracking the fast, period $\mathcal{O}(\epsilon)$, oscillations of true solution y(t).
- y(t) approximated by a 'smooth' Y(t). Usually Y is understood as average of y over one period of the fast oscillations.
- Here we look at true solution y with a stroboscopic light that flashes every $2\pi\epsilon$ units of time. Both 'left' and 'right' situations covered:

• Stroboscopic samples $y(t_0)$, $y(t_0+2\pi\epsilon)$, $y(t_0+4\pi\epsilon)$,... of y (circles) appear to come from 'smooth' function Y(t). Which Y(t)?

- Since $\Psi_{t_0} = Id + \mathcal{O}(\epsilon)$, there exist an autonomous modified eqn. $(d/dt)Y = F_{\epsilon}(Y)$, with t-flow $\Phi_t^{(\epsilon)}$, sch tht $\Psi_{t_0} = \varphi_{t_0,t_0+2\pi\epsilon}$ coincides (formally) with $\Phi_{2\pi\epsilon}^{(\epsilon)}$.
- Hence the n-th power $\Psi^n_{t_0}$ (map that advances y over n periods) coincides with the n-th power of $\Phi^{(\epsilon)}_{2\pi\epsilon}$ ie with $\Phi^{(\epsilon)}_{2\pi n\epsilon}$.
- Conclusion: the values

$$y(t_0), \quad y(t_0+2\pi\epsilon), \quad \dots \quad y(t_0+2\pi n\epsilon), \quad \dots$$

of the highly oscillatory solution of $(d/dt)y = f(y, t/\epsilon; \epsilon)$ coincide with the values

$$Y(t_0), \quad Y(t_0+2\pi\epsilon), \quad \dots \quad Y(t_0+2\pi n\epsilon), \quad \dots$$

of the solution of $(d/dt)Y = F_{\epsilon}(Y)$ such that $Y(t_0) = y(t_0)$.

Two remarks:

- Coincidence is as formal power series in ϵ . Truncating the formal series of the 'exact' F_{ϵ} , one obtains averaged systems with $O(\epsilon)$, $O(\epsilon^2)$, ... errors. These issues are ignored in presentation.
- If the initial condition were prescribed at a different value of t_0 , then the Poincaré operator $y_0 \mapsto y(t_0 + 2\pi\epsilon)$ changes and one obtains a different F_{ϵ} . (Broken lines in next figure.)

Red wiggly lines: solutions of ivp's corresponding to two initial conditions, y_0 and y* imposed at $t=t_0$. Solid blue lines: solutions of $(d/dt)Y=F_{\epsilon}(Y)$ with same initial data.

Chartier, Murua, SS, FoCM 2010 show:

- \bullet Possible to find systematically the explicit analytic expression for F_{ϵ} in terms of f by using ideas from the modern analysis of numerical methods —trees, B-series, . . . —.
- Such an explicit expression is useful on its own right to obtain analytically averaged system of high order of accuracy and to systematized the method of averaging.
- Furthermore, may be used to analyze numerical methods . . . (idea not pursued here).

III. SAM: A NUMERICAL METHOD BASED ON STROBOSCOPIC AVERAGING

- We shall compute the smooth interpolant Y(t) by integrating the averaged equation $dY/dt = F_{\epsilon}(Y)$ with a numerical method (macro-solver) with macro-step size H (much) larger than the fast period $2\pi\epsilon$.
- In the spirit of the Heterogeneous Multiscale Methods of E and Engquist, our algorithm does not require the explicit knowledge of the analytic form of F_{ϵ} . Info. on F_{ϵ} is gathered on the fly by integrating [with micro-step size h] the original system dy/dt = f in small time-windows of length $\mathcal{O}(\epsilon)$.
- There is much freedom in the choice of the macro-solver and micro-solver, including standard variable-step/order codes.

- How to compute F_{ϵ} at a given value Y^* of its argument?
- Recall that the *t*-flow of the vector field F_{ϵ} is $\Phi_{t}^{(\epsilon)}$:

$$F_{\epsilon}(Y^*) = \frac{d}{dt} \Phi_t^{(\epsilon)}(Y^*) \Big|_{t=t_0}.$$

• In algorithm, derivative approximated by differences, such as

$$F_{\epsilon}(Y^*) = \frac{1}{2\delta} \left[\Phi_{\delta}^{(\epsilon)}(Y^*) - \Phi_{-\delta}^{(\epsilon)}(Y^*) \right] + O(\delta^2).$$

• Choosing $\delta=2\pi\epsilon$, results in $\Phi_{\pm\delta}^{(\epsilon)}=\varphi_{t_0,t_0\pm\delta}$ (stroboscopic effect) and

$$F_{\epsilon}(Y^*) \approx (1/(4\pi\epsilon))[\varphi_{t_0,t_0+2\pi\epsilon}(Y^*) - \varphi_{t_0,t_0-2\pi\epsilon}(Y^*)].$$

- $\varphi_{t_0,t_0\pm 2\pi\epsilon}(Y^*)$ computed by solving the originally given $dy/dt=f(y,t/\epsilon;\epsilon)$, over $t_0-2\pi\epsilon\leq t\leq t_0+2\pi\epsilon$, with initial condition $y(t_0)=Y^*$.
- Of course, one may use other finite-difference formulae such as the fourth-order based on $t_0 + 2\pi k\epsilon$, $k = 0, \pm 1, \pm 2$.
- Note lack of synchrony between macro and micro integrations. Micro-integration always start from t_0 . Starting micro-integratns from current value of t in macro-integration will not do: refer to preceding figure.

- Algorithm presented evolved from our study of Heterogeneous Multiscale Method (E, Engquist, Tsai, Sharp, Ariel, . . .)
- Basic underlying idea has appeared several times in the literature over the last fifty years (in particular, in astronomy and circuit theory): envelope-following methods, multirevolution methods, ... Taratynova, Mace and Thomas, Graff and Bettis, Gear/Petz-old/Gallivan,... (outer integrator has to be built on purpose).
- Kirchgraber 1982, 1988 uses high-order RKs. Recovery of macro-field not from numerical differentiation.
- For comparison refer to written version of present talk.

http://hermite.mac.cie.uva.es/sanzserna

IIII. ERROR ANALYSIS

- Three sources of errors:
- 1. Approximate true values of F_{ϵ} by a finite difference approximation \widetilde{F}_{ϵ} . Error is $\mathcal{O}(\epsilon^2)$ for 2nd order differencing.
- 2. Use in difference formula of $\varphi_{t_0,t_0\pm 2\pi\epsilon}(Y^*)$ obtained via microintegration. Error in $\varphi_{t_0,t_0\pm 2\pi\epsilon}(Y^*)$ is $\mathcal{O}((\Delta\tau)^p)=\mathcal{O}((h/\epsilon)^p)$, where p is the order of the micro-integrator. Errors in F_ϵ are then $\mathcal{O}(\epsilon^{-1}(h/\epsilon)^p)$.
- 3. Use of macro-integrator to solve averaged equation. Error $\mathcal{O}(H^P)$, where P is the order of the macro-integrator.

Summing up

$$\mathcal{O}\left(\epsilon^2 + H^P + \frac{1}{\epsilon} \left(\frac{h}{\epsilon}\right)^p\right) = \mathcal{O}\left(\epsilon^2 + H^P + \frac{1}{\epsilon} (\Delta \tau)^p\right),$$

• In some cases, the micro-integration error is $\mathcal{O}(\epsilon^{\nu}(\Delta\tau)^p)$ with $\nu > 0$ (ie errors vanish if $\epsilon \downarrow 0$ with h fixed). Then we have

$$\mathcal{O}\left(\epsilon^2 + H^P + \epsilon^{\nu - 1} \left(\frac{h}{\epsilon}\right)^p\right) = \mathcal{O}\left(\epsilon^2 + H^P + \epsilon^{\nu - 1} (\Delta \tau)^p\right).$$

V. NUMERICAL RESULTS

(A) A perturbed Kepler problem in the plane (from Kirchgraber):

$$\frac{d}{ds}x = v, \quad \frac{d}{ds}v = -\frac{1}{r^3}x + \epsilon G(x),$$

where

$$G(x) = -\nabla V(x), \quad V(x) = -\frac{1}{2r^3} + \frac{3x_1^2}{2r^5}, \quad r = \sqrt{x_1^2 + x_2^2}.$$

Use fictitious time $\tau = \lambda(x, v)s$, with $\lambda(x, v) = (-2E(x, v))^{-3/2}$ (*E* denotes energy), and system becomes

$$\frac{d}{d\tau}x = \lambda(x,v)v, \quad \frac{d}{d\tau}v = \lambda(x,v)\left(-\frac{1}{r^3}x + \epsilon G(x)\right).$$

If $\epsilon = 0$ (unperturbed) all solutions are 2π -periodic in τ .

•
$$x_1(0) = 1$$
, $x_2(0) = 0$, $v_1(0) = 0$, $v_2(0) = 1$.

•
$$\epsilon = 2^{-12}, 2^{-13}, 2^{-14} (2^{-12} \approx 2.4 \times 10^{-4}).$$

- Integration interval $0 \le \tau \le (\pi/8)\epsilon^{-1}$.
- Constant-step classical RK4 as macro-integrator. Secondorder differences.

(A1) Error vs. number of micro-steps, stars: SAM with RK4 micro-integrator 8 macro-steps, circles: standard RK4. Halving ϵ doubles the error

(A2) Error vs. number of micro-steps, stars: SAM with (Strang like) splitting (Kepler+perturbation) micro-integrator 16 macro-steps, circles: standard splitting. Halving ϵ halves the error (ν = 2).

Summary: When $\Delta \tau$ is kept fixed and ϵ is halved:

- The standard RK integrator works twice as much and doubles the error.
- The standard splitting scheme works twice as much and halves the error.
- SAM with RK micro-integrations uses the same work and doubles the error.
- SAM with splitting micro-integration uses the same work and halves the error.

(B) Van der Pol:

$$\frac{d}{d\tau}q = p, \qquad \frac{d}{d\tau}p = -q + \epsilon(1 - q^2)p.$$

Perturbed harmonic oscillator. When the initial condition is away from limit cycle, solution needs $\mathcal{O}(1/\epsilon)$ time-interval to reach the limit-cycle. In transient phase, solution changes by $\mathcal{O}(\epsilon)$ between consecutive stroboscopic times. Near limit cycle by $\mathcal{O}(\epsilon^2)$.

•
$$q(0) = p(0) = 0.5$$
, $\epsilon = 2^{-9}$, $0 \le \tau \le \tau_{\text{end}} = 32\pi\epsilon^{-1} \approx 51,000$

The following runs yield roughly the same errors:

- SAM with (variable step-size) ode45 macro-integrator (40 macro-steps); Strang splitting micro-integration $\Delta \tau = \pi/16$
- SAM with the fifth-order formula of ode45, constant stepsize (128 macro-steps); Strang splitting micro-integration $\Delta \tau = \pi/16$
- Strang-splitting (260,000 steps), $\Delta \tau = \pi/16$

 \bullet SAM: macro-step-length in ode45 as a function of τ and macro-step-length in constant step-size implementation. Note H may be 2,000 or larger!

(C) DAEs:

- Approach easily extended to DAEs.
- Eg: vibrated inverted pendulum and vibrated double inverted pendulum formulated in cartesian coordinates. (Index 2 DAEs, if GGL approach used.)
- Half-explicit RK method of order 3 (Brasey/Hairer (1993)) successfully implemented.

• Error vs. number of micro-steps, $\epsilon=10^{-4}$, 10^{-6} , stars: SAM with macro-step-size $H=\pi/2500$, circles: standard integration $(h=2\pi\epsilon/n, n=2^j, j=2,3,\ldots)$. Dividing ϵ by 100 does not change the error $(\nu=1)$.