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I. HIGHLY OSCILLATORY PROBLEMS



e Consider the oscillatory IVP

d t
d—z:f(y,;;e), to <t <tog+ L, y(tO):yOERdv

where f(y,T;¢) is 2m-periodic in 7 = t/e. (ie f is 2mwe-prdc in t).

e We are interested in the case ¢ <« 1, L = O(1) (solution
computed over many periods). Direct numerical solution may
be very costly.

e In some applications and for the analysis, system may appear

in re-scaled format:

dy

= el y i)

with integration interval of length L/e.



e Denote by ¢4, ; the solution operator yg — y(t). Note dependence
on tg and t (system is not autonomous). It satisfies the property

Ptq,to O Spto,tl — Soto,tg-

o Wiy = ¢ig.t9+2ne 1S the one-period or Poincare map. Its n-th
power satisfies \U?O = ¥14,to+2mne: 1€ advances the solution over
n periods starting from t = ¢g.

e Attention restricted to cases where f = O(1/¢) and W, is an
O(e) perturbation of the identity as ¢ | O.

e Next slide shows two situations covered by our approach.
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o Left: f = O(1). Solution undergoes O(e) changes along one
period of length O(e). Right: f = O(1/e¢). Solution changes
along one period are O(1) but W, = Id + O(e¢)
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II. STROBOSCOPIC AVERAGING



e Method of (analytic) averaging. Directly applicable only to
situations as in left picture. Try to describe ‘smooth’ evolution
of the system without tracking the fast, period O(¢), oscillations
of true solution y(t).

e y(t) approximated by a ‘smooth’ Y (¢). Usually Y is understood
as average of y over one period of the fast oscillations.

e Here we |look at true solution y with a stroboscopic light that
flashes every 2me units of time. Both ‘left’ and ‘right’ situations
covered:
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e Stroboscopic samples y(tg), y(tg + 2me), y(tg + 4me),...of y

(circles) appear to come from ‘smooth’ function Y (¢). Which
Y (t)?



e Since Wy, = Id + O(¢), there exist an autonomous modified

eqn. (d/dt)Y = Fe(Y), with t-flow &', sch tht Wi, = o 4 1o
(€)

coincides (formally) with &5~ .

e Hence the n-th power \U?O (map that advances y over n periods)
(€)

2Tne"

coincides with the n-th power of CDgi?e ie with ®

e Conclusion: the values

y(to), y(to+2me), ... y(tg—+ 2mne),
of the highly oscillatory solution of (d/dt)y = f(y,t/e; €) coincide
with the values

Y(tg), Y(to+2me), ... Y(tg-+ 2mne),
of the solution of (d/dt)Y = Fc(Y') such that Y (tg) = y(to).
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Two remarks:

e Coincidence is as formal power series in €. Truncating the
formal series of the ‘exact’ F¢, one obtains averaged systems with
O(e), O(e?), ...errors. These issues are ignored in presentation.

e If the initial condition were prescribed at a different value of
to, then the Poincaré operator yg — y(tg+ 2me) changes and one
obtains a different Fe.. (Broken lines in next figure.)
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Red wiggly lines: solutions of ivp's corresponding to two initial
conditions, yg and yx imposed at t = tg. Solid blue lines:
solutions of (d/dt)Y = Fc(Y) with same initial data.
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Chartier, Murua, SS, FoCM 2010 show:

e Possible to find systematically the explicit analytic expression
for Fe in terms of f by using ideas from the modern analysis of
numerical methods —trees, B-series, ...—.

e Such an explicit expression is useful on its own right to obtain
analytically averaged system of high order of accuracy and to

systematized the method of averaging.

e Furthermore, may be used to analyze numerical methods . .. (idea
not pursued here).
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III. SAM: A NUMERICAL METHOD BASED ON
STROBOSCOPIC AVERAGING
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e We shall compute the smooth interpolant Y (¢) by integrating
the averaged equation dY/dt = F.(Y) with a numerical method
(macro-solver) with macro-step size H (much) larger than the
fast period 2e.

e In the spirit of the Heterogeneous Multiscale Methods of E and
Engquist, our algorithm does not require the explicit knowledge
of the analytic form of F¢. Info. on F¢ is gathered on the fly by
integrating [with micro-step size h] the original system dy/dt = f
in small time-windows of length O(e).

e [ here is much freedom in the choice of the macro-solver and
micro-solver, including standard variable-step/order codes.
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e How to compute F¢ at a given value Y* of its argument?

e Recall that the t-flow of the vector field F¢ is <D§€):

oy A (€) un
Fe(Y™) = dt<l>t (Y )t:tO

e In algorithm, derivative approximated by differences, such as

F(r) = [o0(v") - o ()] + 062,

e Choosing 0 = 2me, results in <l>§fg = Pig.t04s (Stroboscopic
effect) and

Fe(Y™) = (1/(4me))[e1g to+27e(Y ™) — @1g,t0—27e (Y )],
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® V1, to+2re(YF) computed by solving the originally given dy/dt =
f(y,t/e;e), over tg — 2we < t < tg + 2mwe, with initial condition
y(tg) = Y™.

e Of course, one may use other finite-difference formulae such
as the fourth-order based on tg + 2mwke, K = 0,41, £2.

e Note lack of synchrony between macro and micro integrations.
Micro-integration always start from tg. Starting micro-integratns
from current value of ¢ in macro-integration will not do: refer to
preceding figure.
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e Algorithm presented evolved from our study of Heterogeneous
Multiscale Method (E, Engquist, Tsai, Sharp, Ariel, ...)

e Basic underlying idea has appeared several times in the literature
over the last fifty years (in particular, in astronomy and circuit
theory): envelope-following methods, multirevolution methods,
... Taratynova, Mace and Thomas, Graff and Bettis, Gear/Petz-
old/Gallivan,. .. (outer integrator has to be built on purpose).

o Kirchgraber 1982, 1988 uses high-order RKs. Recovery of
macro-field not from numerical differentiation.

e For comparison refer to written version of present talk.

http://hermite.mac.cie.uva.es/sanzserna
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IIII. ERROR ANALYSIS
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e | hree sources of errors:

1. Approximate true values of F¢ by a finite difference approximation

~

F.. Error is O(e2) for 2nd order differencing.

2. Use in difference formula of ¢y, 1 +27(Y ™) obtained via micro-
integration. Error in ¢ 1i+27(Y™) is O((AT)P) = O((h/e)P),
where p is the order of the micro-integrator. Errors in F¢ are
then O(e~1(h/e)P).

3. Use of macro-integrator to solve averaged equation. Error
O(HY), where P is the order of the macro-integrator.
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e SumMmMing up

O (e2 + H + %(@)p> =0 (62 + 0P + %(Af)p) |

€

e In some cases, the micro-integration error is O(e“(AT)P) with

v > 0 (ie errors vanish if € | O with h fixed). Then we have
h
O (62 + HY + e’/_l(—)p> =0 (62 + HY + ey_l(AT)p) :

€
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V. NUMERICAL RESULTS

23



(A) A perturbed Kepler problem in the plane (from Kirchgraber):
d d 1

ST=Y, U= g + e G(x),
where
1 327
G(a) =-VV(2), V(@)=—55+ Qfg, r = /22 + 23.

Use fictitious time 7 = A(z,v)s, with A(z,v) = (—2E(z,v)) 3/2
(E denotes energy), and system becomes

d d 1
= A(z, v)v, P Az, v) <—T—3$ + GG(f’f)) ‘

If ¢e =0 (unperturbed) all solutions are 2w-periodic in 7.
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® 36‘1(0) =1, :132(0) = 0, ’01(0) = 0, ”02(0) = 1.
o c =212 2713 >=14 (p-12 1, 5 4 x 107%).
e Integration interval 0 < 7 < (7/8)e 1.

e Constant-step classical RK4 as macro-integrator. Second-
order differences.
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(A1) Error vs. number of micro-steps, stars: SAM with RK4
Mmicro-integrator 8 macro-steps, circles: standard RK4. Halving
e doubles the error
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(A2) Error vs. number of micro-steps, stars: SAM with (Strang
like) splitting (Kepler+perturbation) micro-integrator 16 macro-
steps, circles: standard splitting. Halving € halves the error (v =
2).
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Summary: When ATt is kept fixed and ¢ is halved:

e [ he standard RK integrator works twice as much and doubles
the error.

e [ he standard splitting scheme works twice as much and
halves the error.

e SAM with RK micro-integrations uses the same work and
doubles the error.

e SAM with splitting micro-integration uses the same work and
halves the error.
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(B) Van der Pol:

d d
—q = p, —p=—q+e(1l—-¢)p
dr dr

Perturbed harmonic oscillator. When the initial condition is away
from limit cycle, solution needs O(1/¢) time-interval to reach the
limit-cycle. In transient phase, solution changes by O(e) between
consecutive stroboscopic times. Near limit cycle by O(e2).

e ¢(0) =p(0) =05, e=2"2, 0< 7 < Tepg = 32me 1 &~ 51,000

29



The following runs vield roughly the same errors:

e SAM with (variable step-size) ode45 macro-integrator (40 macro-
steps); Strang splitting micro-integration Ar = 7/16

e SAM with the fifth-order formula of ode45, constant step-
size (128 macro-steps); Strang splitting micro-integration At =

/16

e Strang-splitting (260,000 steps), AT = n/16
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e SAM: macro-step-length in ode45 as a function of = and macro-
step-length in constant step-size implementation. Note H may
be 2,000 or larger!
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(C) DAEs:

e Approach easily extended to DAEs.

e Eg: vibrated inverted pendulum and vibrated double inverted
pendulum formulated in cartesian coordinates. (Index 2 DAEs,

if GGL approach used.)

e Half-explicit RK method of order 3 (Brasey/Hairer (1993))
successfully implemented.
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e Error vs. number of micro-steps, e = 10~%4, 10~°, stars: SAM
with macro-step-size H = « /2500, circles: standard integration
(h = 2mwe/n,n = 27,5 = 2,3,...). Dividing ¢ by 100 does not
change the error (v = 1).
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