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The Schrodinger equation

We consider different families of Geometric Integrators for solvmg the SE

----------------------------------------------------------------------------------------------------

The solution of the discretised autonomous equation is given by

do o) — —itH,
1Ec(t) = Hc(t) = (t) = e (0)

where ¢ = (Cy,..., ¢y)' e CVand H=T +V e R¥V Hermitian matrix.
Fourier methods are frequently used

(Ve), = V(z;)¢ N products
Tc = F 1Dy Fec O(N log N) operations

JF is the fast Fourier transform (FFT)



The Methods Considered

| - If the solution is not smooth: methods which involve products H ¢
Polynomial approximations to the action of the exponential on a vector

1 — Taylor
c"tl = —ihHen 2 — Chebyshev

3 — Splitting (real + imaginary parts)

Il - If the solution is smooth: to split H=T+V

High-order Splitting-decomposition methods (with possible complex
coefficients)

—iayhT g—ibyhV | g—iashT g—ibshV

e e
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The Methods Considered

| - If the solution is not smooth: methods which involve products H ¢
Polynomial approximations to the action of the exponential on a vector

1 — Taylor
c"tl = —ihHen 2 — Chebyshev

3 — Splitting (real + imaginary parts)

If we consider ¢ = ¢ -+ ip the following problems are equivalent

- d _ L o(t) = o—itH,
1Ec(t) = Hc(t) = (t) = e (0)

d{q}_( 0 H){q} O(f)—( cos(tH) sin(tH) )
a#1p (" \ —H 0 p 7\ —sin(tH) cos(tH)

or,inshort: z2 =M Zz with z = (q,p)!



The Taylor Method

An m-stage Taylor method to approximate z(t, + 7) = "M 2(t,)

“n+l1 = Pr{.! (TM)zn

where PI (7)) is the Taylor expansion of the exponential, which
approximates the exact solution up to order m

- m |
P,-.{,(Tlf) = Z _lllf;.-‘lf;}-f — oTM -+ (_f}(l,_m—l—l-‘}
j=07"



The Taylor Method

An m-stage Taylor method to approximate z(t, + 7) = "M 2(t,)

“n+l1 = Pr{.! (TM)zn

where PI (7)) is the Taylor expansion of the exponential, which
approximates the exact solution up to order m

- m |
P,-.{,(Tlf) = Z _lllf;.-‘lf;}-f — oTM -+ (_f}(l,_m—l—l-‘}
j=07"

We can advance each step by using the Horner's algorithm
Yo — “n
do i=1,m
Yi = Zn T ﬁ'rﬂ’lr Yi—1
enddo
“n41 — Ym

This algorithm can be trivially rewritten in terms of the real vectors, and it
only requires to store two extra complex vectors (four real vectors).



The Taylor Method

The matrix P (M) that propagates the numerical solution can be written as

o e Ty(rH)  Ta(rH)
Fn(TH) = ( CTa(rH) Th(rH) )

where the entries T1(y) and T2(y) are the Taylor series expansion of cos(y)
and sin(y) up to order m, i.e.

N L . L2,
P{(._a-)z(__r 1). P;(.,E-JZ( _f 1_i)

Notice that det Pl (y) = T1(y)2 4+ To(y)2 # 1

The eigenvalues are given by
AMo=1y +i15

The scheme is stable if 17 (y)+75(y) <1
For practical purposes, we require however

TE(y) + 15 (y) < 14 tol



The Chebyshev Method

The Chebyshev method approximates the action of the exponential on the
initial conditions by a near-optimal polynomial given by:

u(t) = e "y~ PS(LH) ug

where o 1 H
P tH )Yug = cp 2 .7, .
m—l( )“*U coug + ;1;1 Cr.dp (;‘J(H)) un

with ¢ = (—i)*.J.(t p(H)). Here, Tk(x) is the kth Chebyshev polynomial
generated from the recursion

'TJJI._I_]_(;I‘) = 2;15‘]'_:;{(;1‘) — '_Fltr'lrl._jl(;jli‘)1 k E 1

and To(x)=1, Ti(x)=x. Jk(w) are the Bessel functions of the first kind which
provides a superlinear convergence for m >t p(H) i.e.

tp(H)

e




The Chebyshev Method

The Clenshaw algorithm allows to compute the action of the polynomial by
storing only three vectors

d:”l—i_]- — (:.]T {-f]:}n =0
do i=m—-1,0

I 2 _ _

“]'E — C32n + mH{fz_i_l — “IE—i—Q
enddo

Zp41 = dg —d2

which can also be easily rewritten in term of the real vectors and it only
requires to store six real vectors. The scheme can be written as

oy — [ C1(TH)  Co(TH)
Fm(f H) — ( —C'Q(TH) (;Tl(TH)

As in the Taylor case: det PS, (y) = C1(y)? + Ca(y)? # 1

It is not a symplectic transformation.



Taylor order tol=inf  tol=10® tol=10"%
10. 0. 0. 0.
15. 0.111249 0.111249 0.111249
20. 0.164515 0.164515 0.164515
25. 0. 0.065246 0.065246
30. 0. 0.108088 0.108088
35. 0.0461259 0.138361 0.322661
40. 0.0804521 0.160884 0.321618
45. 0. 0.178294 0.320804
50. 0. 0.192154 0.32015

Chebyshev order tol=inf tol=10%  tol=107*

20. 0.00362818 0.321723 0.643217
25. 0.00233368 0.384289 0.64029
30. 0.00162599 0.425648 0.638324
35. 0.00119743 0.45502 0.636912
40. 0.000918402 0.476957 0.63585
45. 0.000726646 0.635021 0.635021
50. 0.000589228 0.634356 0.634356
55. 0. 0.633812 0.633812
60. 0. 0.633357 0.633357



The Symplectic Splitting Method

Taylor and Chebyshev methods consider vector-matrix products to
approximate

cl +1 _ . thH ch
A first order approximation

C-n.—l—l — ™ — jhHe"

can be written with ¢ = q <+ 7p

q-n.—|—1 1 p-n.—l—l — ¢ l-n. + p-n. _shH ( q-n. 1 E-p-n. )

or
n—+1

q
p-n.-—l— 1

q”" + hHp"
p"t — hHq"



The Symplectic Splitting Method

The linear time dependent SE

d . _ _—itH
0 Ec(t) =Hc(t) = c(t)=e€ c(0)

with H real and can be reformulated using real variables as the
Hamiltonian system:

%{:i}=(-%‘3){3}

cos(tH) sin(tH) )

with formal solution: O(t) = ( —sin(tH) cos(tH)



The Symplectic Splitting Method
We have built splitting methods for the harmonic oscillator!!!

il )=1060)+ (5 8)I{r}

m—,  — N — —
A B

m
Splitting method | K (h) = [] gaiA hb;B
=1

m 2 . i
. - 1 — a;bh ah N\ [ K1 Ko
We have K(h) = :'1:_[1( —bih 1 ) = ( Ks Ka )

i

m
Ky =Y kyh? K=Y koh? !
i=0 i=1
T m

K3=Y kg h? 1 Kqg=Y kq;h?
i=1 =0

which are polynomials of degree twice higher as in the previous cases for

the same number of stages.



The Symplectic Splitting Method

The algorithm: a generalisation of the Horner's algorithm or the

Clenshav algorithm
do i=1.m
v=Hp
qg.=q-+a;Tv
v= Hgq
pi=p-—bTv
enddo

It only requires to store one additional real vector of dimension

The methods preserve symplecticity by construction: det K(h) =1

Stability: M is stable if |Tr K|<2, i.e.

> (k1 + kay)h®

i=0

|f v+ 7 \P4| = < 2




The Symplectic Splitting Method

Theorem: Any composition method is conjugate to an orthogonal method,
and unitarity is preserved up to conjugacy.

There is a recursive procedure to get the coefficients of the splitting
methods from the coefficients of the matrix K.

We can build different matrices with:

- Large stability domain

- Accurate approximation to the solution in the whole interval (like
Chebyshev)

- Methods with different orders of accuracy and very large number of
satges.



tp

(H)

Splitting Methods: valid for < @
Tr

m r O yo/m Y i(laj] + (b)) i (6'm) v (8'm)

10 6 1 1.1586 3.805 0.001412 0.01245

20 16 1 1.0456 3.0553 0.000611028 0.0258433
30 24 1 1.0246 3.19658 0.0000841871 0.0373544
30 6 1.4 1.41876 3.0021 0.0000518519 0.0131295
30 0 1 1.1411 3.04948 2.01002- 10~ 228673 - 10
30 0 075 1.027 3.44381 1.2545 - 10~17 596706 - 10—14
30 0 0.5 0.937874 3.84442 7.06031- 102 6.66693 - 10—18
40 0 1  1.15953 3.21986 1.06301 - 10~1%  1.07587 - 10—12

Error bounds:

0 = mb'

ln — u(®)]] <

k
el := || H

6"

_ tur®) ol + v @l ,




Schrodinger equation with a Poschl-Teller potential

1 92
2 2

-i;—i-r_j;(.r: t) = ( + 1(1)) U (x, 1)

with V() a? A(A—1)
(x) = —
2pecosh? (o)
p=1745., a=2. A= 24,5,

Initial conditions

—92.?'2

(@, 0) = pe

T

te[0,27] = €[-5.5]. N =128 parts

N2 . .
p(H) = ?L.” (i) + (Vinaz — Vinin) = 1.12
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The Schrodinger equation

[l - If the solution is smooth: to split H=T+V

High-order Splitting methods

—ia1hT e—iblh,V - a—tashl e—ibshv

e - e

but the computation using FFTs is:

Vi

Ve 1e—ic1.1fLDTF e—iblhl ‘ j_l——le—ia.sh-DTF e—z‘bghv
The computational cost is independent if the coeficients are real

or complex but, the coefficnets a; must be real because Dy is an
unbounded operator.



Splitting methods with complex coefficients

Given a symmetric method of order 2p,S2Pl(h), we can define
a recursion by symmetric compositions

Mp

=1

Z apj =1 and o2P — 0.

Starting from S?I(h), we have

Mp Mp_1 my

SEEEI =TT ( TT |- { 1T S®¥(apjpcp 1o - c1h)

fp:'l fp_1:1 f1:1

Castella, Chartier, Descombes, & Vilmart, BIT 49 (2009), 487-508,
and Hansen & Ostermann, BIT 49 (2009), 527-542, obtained
methods up to order 14 with coefs. having positive real part.

>[2] >[4] >[6] >[8] ~[14] ~[16]
t("h — if"h — L()h — L("h — .. +L()h — ':)h



Splitting methods with complex coefficients
l{—_)u = JAUu—+ F(tu)

ot ¢ |

(a) The linear heat equation with potential

3,
“u=Au+ V(x)u

ot
(b) The semi-linear complex Ginzburg—Landau
equation:
ou IR
5 = a AU+ =U — F|ul7u,

witha=14+Jci, 3=1—lcsand=,ci,c3 € R.



Splitting methods with complex coefficients
l{—_)u = JAUu—+ F(tu)

ot ¢ |

(a) The linear heat equation with potential

3,
“u=Au+ V(x)u

ot
(b) The semi-linear complex Ginzburg—Landau
equation:
ou IR
5 = a AU+ =U — F|ul7u,

witha=14+Jci, 3=1—lcsand=,ci,c3 € R.
Selipy = Sklyh)---slH7h)
SEI(h) = SB(y1h)---SB(345h)

SB, Casas, Chartier, and Murua, Splitting methods with complex coefficients for
some classes of evolution equations. Submitted. arXiv:1102.1622v1



A simple example: the Lotka-Volterra problem

u=u(v-2), v=v(1-u)

I(u,v) =In(uv?) — (u+ v).

'l F L L L L L L L
— S_6R
-2 [ I S76C =
4x S_6C
\ I . 7
3 S

|
1SN

LOG(ERROR)

_9' r r r r r r r

3.8 4 42 44 46 48 5 5.2
LOG(EVALUATIONS)




Splitting for perturbed systems

d 1
i—p(x,t) = (——Vz + V(. t‘)) W(a, t)
21

ot

Additional benefits of the unitary splitting: It allows different ways to splitt
depending on the structure of the problem

1 .
H = 5(pQ + :1:2) + =Vi(z, t) p = —’l-%



Splitting for perturbed systems

d 1
i—p(x,t) = (——Vz + V(. t‘)) W(a, t)
21

ot

Additional benefits of the unitary splitting: It allows different ways to splitt
depending on the structure of the problem

1 .
H = 5(pQ + :1:2) + =Vi(z, t) p = —’l-%
€—-z'.t%(pz—|—;132) _ e—if(t)%;rz €—ig(t)%p:2 e—-if(t)%;r:z

g(t) =sin (1), f(t) = (1 —cos(r))/sin(t)  |t| <



Splitting for perturbed systems

) 1
i‘(_—'irl,.-"';(;_xf_, t) = B v + V(x,t) | ¥(x,t)
ot 211

Additional benefits of the unitary splitting: It allows different ways to splitt
depending on the structure of the problem

1
H = E(pz + :1:2) + eVi(x, t) p=—i2

n’_) .

—its(PP+a?) _ —if(32? —ig(t)3p? —if(t)5a?

g(t)y =sin(t),  f(t) = (1-cos(t))/sin(t)  |t| < m
This result can be generalised to the explicitly time-dependent case:

1
H = E(p2 + w(t)z?) + eVi(x,t)

P. Bader and SB, Fourier methods for the perturbed harmonic oscillator in linear
and nonlinear Schrddinger equations. Phys Rev. E. In press.



Conclusions

» Splitting methods are powerful tools for numerically solving the
Schrddinger equation

» Some a priori knowledge of the problem and its solution is essential
for an efficient integration

» The performance strongly depends on how the system has been
split as well as on the choice of the appropriate method for each
problem

» Splitting methods with complex coefficients could lead to very
efficient methods for many problems



