Home |  english |  Impressum |  Datenschutz |  Arbeitsgruppe Numerik | Mathematik | KIT
Arbeitsgruppe Numerik

Sekretariat
Kollegiengebäude Mathematik (20.30)
Zimmer 3.002 (3. OG)

Adresse
Karlsruher Institut für Technologie
Institut für Angewandte und Numerische Mathematik 1
Englerstr. 2
76131 Karlsruhe

Öffnungszeiten:

Mo. - Fr.

9 - 12 Uhr

Mo. - Do.

13 - 16 Uhr

Kontakt:
Telefon:0721 608-42061
Fax:0721 608-43767
E-Mail:na-sek@math.kit.edu

Dominik Löchel

Wir bitten um Verzeihung, diese Seite ist leider nur in englischer Sprache verfügbar, daher zeigen wir die englische Version unterhalb an.

Adjusting Atlas Plates

The "Atlas of the Human Brain" is a drawing of a coronal sliced brain of a human being. On the one hand some deformation occures while slicing and on the other hand there are inaccuracies in drawing the structures. So the atlas suffers of the fact that coronal plates do not fit on each other exactly. On this page a technique of non-linear transformation on the plates to adjust neighbours to each other to a high level of accuracy is described.

To adjust the coronal plates, each plate is matched to the previous and following plate in a nonlinear but quite stiff manner. To avoid our atlas to converge into a cones shape, the transformation is executed simultaneously on all plates. This is achieved by computing a direction of increase in congruence on each plate. Then the optimal stepsize for all layers in common is determined via a collective line-search. This is exactly the same procedure as in matching a pair of two dimensional images by monomodal measure.

Explanation of Parameters
  • boundary condition (rwa) on regularisation of forces: Dirichlet (sin); Neumann (cos); periodic (fft); solely affin-linear transformation (lin).
  • regularisation strength (r): frequencies f are weighted by 1/fr. E.g. stiffnes increases with r. r = ∞ is affin-linear transform only.
  • regualisation of defective eigenvalue in cosine transform by adding s before inversion.
  • Weighting β of mixed derivative term in periodic boundary condition (fft). β = 2 has a strong tendency to volume conservation.