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Multimodal Elastic Image Matching—Abstract

In brain research one often deals with three dimensional (3d) magnet resonance
images (MRI) of the individual human brain, from which one usually analyzes sectional
views. The “Atlas of the human brain” by Prof. Mai et al. is a great tool as a
reference to define the positions of different regions of the brain. Therefore, a
matching of this atlas to the individual MRI is needed.
An exclusively rigid or linear transformation can be defined easily by a set of control
points. Of course, this kind of transformation cannot ensure a global matching. A
more versatile transformation is possible, but it requires a huge amount of time to set
the large number of control points manually by viewing sequences of 2d slices of the
3d image. The quality of the transformation strongly depends on the selection of the
control points. Therefore a fully automated matching process by a computer, which
takes into account all three dimensions simultaneously, is desired.
In this talk the focus is on multimodal non-linear matching. Therefore we establish an
appropriate definition of similarity between two images of different modality and
introduce a model of elastic transformation to preserve coherence. Methods to
stabilize the matching process, to circumvent minor drawbacks and to speed up
computational time are also presented.
Although the topic is of strong mathematical background, this talk will be descriptive
and aims at a non-mathematical audience.
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The
”
Atlas of the Human Brain“ (J.K. Mai et al.)

www.thehumanbrain.info/brain/bn_brain_atlas/brain.html
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Our task

Atlas

MRI

matched
Atlas

coronal sagittal horizontal
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Definition of an Image
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2d image (foto)

I pixel (picture element)

3d image (MRI)

I voxel (volume element)

gray level image

I one value per pixel/voxel

color picture

I three values per
pixel/voxel
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2d example images

reference image R template image T
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Wanted

coordinate transformation
y(~u,~x) := ~x − ~u(~x), in short y

transformed template image
T ◦ y
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The displacement field ~u
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coordinate transformation

y(~u,~x) := ~x − ~u(~x)

I arrows point to position
in T , where color is
picked up

I interpolation is required
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Interpolation
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linear
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nearest neigbour (yellow bars)
+ easiest
− values jump

spline
+ extreme smooth
− expensive computation
− overshoots

linear
+ easy to compute
− intermediate values

cubic
+ smooth
+ computation time ok
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Control points

I define set of (strong or weak) control points and map these
points

I strong control points: the transformation y has to map these
points

I weak control points: these points shall lie close together in the
matched images

I manual selection of control points: long-lasting and
susceptible for inaccuracy

I possible are rigid transformations and affin-linear
transformations

I these transformations do fit only locally
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Monomodal and Multimodal Matching

Monomodal Matching

I corresponding regions ↔ similar
gray levels

I try to fuse gray levels

Multimodal Matching

I corresponding regions ↔
arbitrary gray level

I corresponding feature: contour
lines
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Contour lines

Surface plot of an atlas slice with two different assignments of gray
levels
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levels
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Features of Similarity

I in general, the gray levels are different
I the contour lines correspond
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The Optimization Problem

Find a transformation y , such that the contourlines coincide.

I consider crossing of contour lines

I sum this values over the whole picture domain

I determine a transformation y such that this distance is
minimal
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Result of Minimization

I the outer shape of T ◦ y and R matches.

I the coherence is completly lost.

I this result is useless.
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Regularization

I preserve the coherence/topology

I the displacement field ~u of one voxel and the neighbouring

voxel must be similar, i.e. ~u(~x) ≈ ~u(~x + ε · ~h) for small ε > 0

and any direction ~h.

I at least the slope of the displacement field ~u must be small.
I maybe the curvature of the displacement field ~u must be

small, too.

I Introduce a penalty term
I find a displacement field ~u that minimizes the distance of the

images R and T + α· punishment by slope or curvature of ~u.
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Advanced Minimization Problem

Find a displacement field ~u that minimizes the distance of the
images R and T + α· punishment by slope or curvature of ~u.

minimize~u DR,T

(
y(~u)

)
+ α · S(~u)︸ ︷︷ ︸

Iα(~u)

I The number of parameters in ~u is the number of voxels times
the dimension. For example 2563 · 3 > 50 millionen unknowns.

I Ordinary minimization procedures like steepest descent or the
simplexmethod of Nelder and Mead take to much time

I In the minima of the functional Iα(~u) holds

∂

∂~u
Iα(~u)~h = 0 for each direction ~h ∈ H2(Ω)n

I We get a non-linear boundary value problem.
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Advanced Minimization Problem

Going down the hill in case of two unknowns.
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Basic Algorithm

from smooth to sharp
while images get more similar do

compute direction of deformation
apply this direction with optimal step size

end while
end from
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Given images

Reference R Template T
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Weak stiffness in the elastic transformation

coordinate transformation Templatebild T ◦ yweak

I Artificial deformations occur locally.

I The stiffness is to weak.
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Medium stiffness in the elastic transformation

coordinate transformation Template T ◦ ymedium

I A few local artificial deformations occur.

I The quality is better but not satisfactory.
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Strong stiffness in the elastic transformation

coordinate transformation Template T ◦ ystrong

I No artificial deformations.
I The strong stiffness is good, but it inhibits strong local

deformations.
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Elastic Image Registration – Reconstruction of the Surface

Atlas brain Patient brain matched Atlas
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Summary

I Multimodal image matching relies on contour lines.

I The non-fitting of contour lines defines the distance of both
images.

I The transformation minimizes the distance.

I The elastic model of transformation preserves the coherence.

I Smoothing prevents to be stuck in a local minima.
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For further information, see

http://na.math.kit.edu/loechel/research/imgreg/
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