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Zusammenfassung

Der Menschheit steht ein Energiemangel bevor, da die fossilen Brennstroffe wie Öl und Gas zur
Neige gehen. Kernspaltungskraftwerke sind aufgrund ihrer Gefahr und der ungeklärten Endla-
gerung keine geeignete Alternative. Erneuerbare Energien sind ein recht teurer Ausweg. Auf der
anderen Seite bietet die Fusion von Wasserstoff zu Helium ein riesiges Energiereservoir. Wenige
Gramm dieses Brennstoffes liefern die Energie wie Tonnen von Kohle und das Abgas Helium
verursacht keinen Treibhauseffekt.

Aus diesen Gründen wird schon seit Jahrzehnten versucht eine kontrollierte Kernfusion unter
Laborbedingungen zu erreichen. Zum Auslösen der Fusion ist eine genügend hohe Temperatur
und Dichte für eine ausreichend lange Zeit – die Einschlusszeit – notwendig. Dabei befindet sich
das Gas im sogenannten ”Plasmazustand“, d.h. Atome sind vollständig ionisiert. Eine vielver-
sprechende Möglichkeit dieses Plasma zu handhaben ist der magnetische Einschluss mit dem
Tokamak, einem Torusförmigen Gefäß. Der Tokamak ist Hauptgegenstand dieser Arbeit.

Im Tokamak wird durch Überlagerung äußerer Magnetfelder mit dem des Plasmastroms eine
magnetische Geometrie gebildet, bei der die Bahn jeder Magnetfeldlinie in einer torusförmigen
Oberfläche liegt. Geladene Teilchen mit einer Geschwindigkeitskomponente senkrecht zur Feldli-
nie erfahren im Magnetfeld die Lorentzkraft und gyrieren (kreisen) um die Feldlinie. Der Radius
dieser Kreisbahn heißt Larmorradius und ist winzig gegenüber der Größe der Maschine. Der
Kreismittelpunkt – das Gyrationszentrum – bewegt sich mit der parallelen Geschwindigkeits-
komponente entlang der Magnetfeldlinie und ist damit in der Oberfläche gefangen.

Die klassischen und neoklassischen Transportprozesse in dieser Geometrie sind bereits gut ver-
standen. Letztere berücksichtigen, dass durch die Krümmung des Plasmazylinders das Ma-
gnetfeld auf der Innenseite stärker ist, als außen. Es hat sich allerdings herausgestellt, dass
es zusätzlichen Transport senkrecht zu diesen Flussoberflächen, den sogenannten ”anomalen
Transport“, gibt. Dieser kommt durch Mikroinstabilitäten zustande und ist aktueller Gegen-
stand der Forschung. Der Anomaltransport verursacht, dass Energie und geladene Teilchen aus
der Flussoberfläche nach außen diffundieren wodurch störende Verluste auftreten.

Um diese Prozesse besser zu verstehen und im Endeffekt durch geschickte Bauweise zu reduzie-
ren, ist ein Model zur Beschreibung des anomalen Transports entwickelt worden. Die Komple-
xität der Gleichungen ist durch verschiedene Vereinfachungen reduziert worden, unter anderem
indem sich auf die stärkste Störungsmode konzentriert wird. Aber selbst damit verbleibt eine
komplizierte partielle Differential-Eigenwertgleichung zu lösen.

In einem ersten Ansatz wurde das Modell noch weiter vereinfacht, bis es die Form der Mathieu
Gleichung erreicht. Damit können allerdings nur gemittelte Plasmagrößen in die Berechnung
eingehen. Aber gerade bei einem interessanten Phänomen, dem sogenannten MARFE, treten
extreme poloidale Inhomogenitäten auf, deren Betrachtung von großem Interesse ist. MARFE,
die vielfältige asymmetrische Strahlung aus der Randzone, tritt toroidal symmetrisch, aber po-
loidal lokal an Positionen hoher Dichte auf und entzieht dem Plasma einen erheblichen Anteil
an Energie, die durch Photonen bei der Rekombination der Ionen und Elektronen zu Atomen
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abgestrahlt wird, wodurch sich dieses Phänomen selbst verstärkt.

Ebenfalls von Interesse ist die Untersuchung in elongierter und triangulierter magnetischer Geo-
metrie. Es hat sich gezeigt, dass sich die Plasmastabilität verbessert, wenn die Flussoberflächen
in die Höhe gezogen und ‘D’-förmig werden. Das dafür notwendige Koordinatensystem bringt
stark inhomogene metrische Koeffizienten in die Eigenwertgleichung ein, welche mit der Mathieu-
Gleichung nicht mehr zu handhaben sind.

In dieser Arbeit wird die Eigenwertgleichung in ihrer komplizierten Form betrachtet und ein
effizienter numerischer Löser entwickelt: das Mehrgitter-Jacobi-Davidson-Verfahren. Da die für
die Physik interessante Eigenfunktion mit stärkster zeitlicher Anwachsrate sehr glatt ist, kann
eine grobe Approximation mit geringem Zeitaufwand auf sehr grobmaschigem Gitter erreicht
werden. Diese wird dann auf geschickte Weise mit dem Mehrgitter-Jacobi-Davidson-Verfahren
auf schrittweise feineren Gittern verbessert.

Der effiziente Eigenwertlöser ermöglicht das System der hochgradig nicht-linearen Anomaltrans-
port-Gleichungen in akzeptabler Zeit iterativ zu lösen. Für diese gedämpfte Fixpunktiteration
wird eine problemangepasste Dämpfungssteuerung entwickelt.

Mit den entwickelten numerischen Werkzeugen werden Untersuchungen zur Auswirkung der
magnetischen Geometrie, zur Plasmapositionierung und dem Einfluss der Einblasstelle des Fu-
sionstreibstoffes durchgeführt und mit den Erkenntnissen aus Experimenten verglichen.



Abstract

The fossil fuels like oil and gas are on the decline and thus a shortage of the available energy is
unavoidable in the near future. Power plants of nuclear fission are no good alternatives because
of their enormous danger and the unsolved question of the final disposal. Renewable energy
sources are an expensive resort. On the other hand the fusion of hydrogen (H) to helium (He)
supplies a huge amount of energy. A few grams of such fueling gas offer as much energy as tons
of coal do, but without any green house gases.

Due to these reasons, scientists try to realize controllable burn conditions under laboratory
surrounding for several decades. For ignition of the fusion process the temperature, the density
and the confinement time must reach a certain limit such that many nuclei get close together,
overcome the Coulomb barrier and undergo fusion. Under this condition the gas is in state of
“plasma”, which means that the atoms are fully ionized. One promising possibility to enclose
the plasma is the magnetic confinement in a Tokamak—a torus shaped device. This work will
focus on the Tokamak device.

The superposition of two magnetic fields, one from the external poloidal field coils and the other
one arising from the plasma current, ends up in a magnetic geometry where the trajectory of
each field line lies on the surface of a toroidal enclosed flux tube. Charged particles with a
velocity component perpendicular to the magnetic field lines feel the Lorentz force and gyrate
in the plane perpendicular to the field line. The distance between the charged particle and the
gyration center, the larmor radius, is tiny compared to the dimension of the machine. The center
of rotation moves along the field line with the parallel component of the velocity and therefore
the charged particle is confined in the flux surface.

Classical and neoclassical processes of transport are already well understood within this geom-
etry. The latter one concerns inhomogeneities of the magnetic field strength due to different
lengths of the circumference at the inner and the outer side. However, experiments showed the
existence of an additional transport of particles and energy perpendicular to the flux surfaces,
the so called “anomalous transport”. It is driven by micro instabilities and of current research
interest. The anomalous transport causes a strong diffusion of energy and charged particles
throughout the flux surfaces. These losses make the machine inefficient.

For a better understanding of the anomalous transport and to improve the design of the ma-
chine, a model has been developed to describe the process. The complexity of the original
equations has been reduced by several simplifications. One idea is to solely concentrate on the
perturbation mode with the strongest growth rate in time. This simplified model leads to par-
tial differential eigenvalue problem. In previous approaches the eigenvalue equation has been
further simplified to a Mathieu equation with the disadvantage to be restricted to averaged
plasma parameters. However, in the most interesting case of the so called MARFE and also
with triangulated magnetic geometry, strong poloidal inhomogeneities arise. Their study is of
huge research interest.

In this work we consider the eigenvalue equation in its most complicated form and we develop an
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efficient numerical solver, the multilevel Jacobi-Davidson algorithm. The eigenmode of physical
interest—the one of strongest growth rate in time—is smooth and hence, can be approximated
on a coarse grid with low computational cost. This approximation is subsequently improved on
finer grids by a new variant of the Jacobi-Davidson method.

Once an efficient solver is available, the system of highly nonlinear anomalous transport equations
can be solved iteratively in reasonable computational time. The damped fix point iteration
includes an adaptive damping strategy.

The numerical tool is used to simulate the impact of the magnetic geometry, shifts of the plasma
column, such that the injection of neutrals occurs at different positions and the influence of the
position of puffing in fueling gas.
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Preface

The fossil fuels like oil and gas are on the decline and thus a shortage of the available energy
is unavoidable in near future. Power plants of nuclear fission are not good alternatives because
of their enormous danger and the unsolved question of the final disposal. Renewable energy
sources are an expensive resort. On the other hand the fusion of hydrogen (H) to helium (He)
supplies a huge amount of energy. A few grams of such fueling gas offer as much energy as tons
of coal do, but without any green house gases.

Due to these reasons, scientists tried to realize a controllable burn condition under laboratory
surrounding for several decades. For ignition of the fusion process the temperature and the
density must reach a certain limit for some time such that many nuclei get close together,
overcome the Coulomb barrier and undergo fusion. Under this condition the gas is in the
state of “plasma”, which means that the atoms are fully ionized, i.e., electrons and ions move
around independently at microscopic level. Macroscopically the plasma is neutral. If the charged
particles inside the plasma touch matter they radiate away their ionization energy while they
recombine to neutral particles. Therefore the plasma must be confined in a chamber without
touching the wall.

One promising possibility to confine the plasma is the magnetic confinement. In a magnetic
field, charged particles are affected by the Lorentz force and gyrate around the field lines. The
center of gyration is fixed to a field line and a parallel movement results. Hence the idea is to
close up the field lines. This is realized in the torus shaped device called Tokamak.

In a Tokamak, the superposition of two magnetic fields, one from the external poloidal field coils
and the other one arising from the toroidal plasma current, ends up in a magnetic geometry
where the trajectory of each field line lies on the surface of a toroidal enclosed flux tube. The
center of gyration moves along the field line with the parallel component of the velocity and
therefore it is confined in the flux surface.

Classical and neoclassical processes of transport are already well understood within this geome-
try. The neoclassical theory concerns the inhomogeneities of the magnetic field strength due to
a different lengths of the circumference at the inner and the outer side. However, experiments
revealed the existence of additional transport of particles and energy perpendicular to the flux
surfaces, which is called the “anomalous transport”. The anomalous transport is assumed to
be driven by micro instabilities. It is of current research interest because these losses make the
system inefficient and have to be reduced by better configurations.

In order to build an efficient fusion device, the physics has to be really well understood and
controlled. It is a fact that small fusion devices cannot be efficient. The size of nowadays Toka-
maks causes them to be expensive and modifications to take years. Therefore physicists build up
models that describe the experimental observations. With these models different configurations
can be simulated and the most promising design is can be used experimentally.

This is the point where numerics can help. Numerical methods are required since for most
problems the physical model equations are too complicated to be solved analytically. Numerical
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solutions are used to study experimental setups, which cannot yet be realized. In addition, very
expensive experimental setups can be optimized theoretically beforehand, phenomena can often
be analyzed more clearly by numerical solutions than by measurements or they can be used as
prediction tools for the experimentalist to know where to look at.

Therefore, numerics is an essential part of physical research and thus there is a lot of interest
in having efficient, robust and reliable methods. It is indispensable to minimize computational
time and storage requirements, since realistic problems are typically huge.

A major part of this work results from the close collaboration between numerical mathematics
and theoretical physics. For a lot of achievements in the implementation of such methods for
real world problems, we use physical properties of the solution. Moreover, the results have to fit
the needs of the physicists, who use the codes. Thus the communication was essential in many
ways. In this thesis, we will present numerical methods to efficiently simulate the anomalous
transport process. a long way from a theoretically well understood numerical scheme to an
implementation, which is efficient for a particular application.

This thesis is organized as follows: in Chapter 1 we outline the physical background of the
fusion process and the basics of the magnetic confinement in the Tokamak device together with
its problems, the drift instabilities. This chapter is especially targeted to the mathematician
who is not familiar with the physics.

In the second chapter we introduce the basics of the numerical solution of eigenvalue problems.
This is intended to the physicians and classifies the different types of eigenvalue problems and
the numerical methods from literature. Methods to solve small and medium sized eigenvalue
problems are described and the Jacobi-Davidson method to solve large problems is explained.

In the third chapter the anomalous transport model is introduced and simplification, which leads
to a partial differential eigenvalue problem, is described shortly.

The fourth chapter deals with the numerical treatment of the eigenvalue equation. It starts
with the spatial discretization and develops step by step the strategy of the multilevel Jacobi-
Davidson technique that becomes highly efficient. This approach calculates an approximation of
the desired eigenpairs on a very coarse grid and uses the eigenvector as the initial search space
in the Jacobi-Davidson method that improves the accuracy of the eigenpair on subsequently
finer grids. Methods to determine the right Ritz pair of the projected eigenvalue problem and
an efficient method to solve the correction equation are deduced. Further a strategy to trace
the eigenpairs in respect to a parameter within the eigenvalue equation is developed.

The fifth chapter uses the eigenvalue solver to perform simulations on the impact of the magnetic
geometry of the edge layer.

The self consistent treatment of the model equations is deduced in chapter six. The anomalous
particle flux determined by the solution of the eigenvalue equation is fed back into the initial
plasma parameters by the heat balance equation. By an adaptive damped fixed point trust region
iteration simulations on the impact of the position of neutral particle injection are carried out.

The last chapter sums up the results and gives perspectives on aspects to concern in future
investigation.

This thesis was supported by the Deutsche Forschungsgemeinschaft through the Research Train-
ing Group 1203, “Dynamics of hot plasmas”.



Chapter 1

Introduction to plasma physics

In the first chapter we recall the motivation for the fusion research, the different approaches
to realize a self sustaining fusion process on earth and in particular the basic principles of the
Tokamak as it is communicated in lectures of U. Samm, G. Pretzler and M. Tokar.

1.1 Energy

The fossil fuels like oil and gas are on the decline and thus a shortage of the available energy is
unavoidable in the near future. Power plants of nuclear fission are not good alternatives because
of their enormous danger and the unsolved question of the final disposal. Renewable energy
sources are an expensive resort. On the other hand the fusion of hydrogen (H) to helium (He)
supplies a huge amount of energy. A few grams of such fueling gas offer as much energy as tons
of coal do, but without any green house gases. There is plenty of fusion resources available on
earth for at least the next century and the problem to solve is the realization of a fusion power
plant.

1.1.1 Nuclear energy

In this section we give an overview where the nuclear energy comes from and how the process
of fusion works.

If atomic nuclei undergo nuclear fission or fusion the sum ms of mass of the separated atoms
differs from mass mb of the bound nuclei. This phenomenon is called mass deficit. Einsteins
well known formula

E = mc2 (Einstein)

says, that this mass deficit ∆m = ms−mb is proportional to the difference of the binding energy

∆E = ∆mc2 = (ms −mb)c2 = (Zmp +Nmn −mb)c2 (1.1)

where Z and N denote the number of protons and neutrons respectively, mp and mn denote
their masses and c the speed of light in vacuum.

These binding energies of all common isotopes are shown in Figure 1.1. In the periodic table of
elements the binding energy of the series of light elements from hydrogen (H) generally increases
up to iron (Fe). It has a maximum in the range of iron-56 to nickel-62 and decreases for heavier
elements. The peak of binding energy is caused by two contrary forces, the attractive strong
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Figure 1.1: Binding energy per nucleon for all common isotopes offered by [45].

nuclear force and the repelling Coulomb force

FC =
1

4πε0

q1q2
r2

, (Coulomb force)

where q1 and q2 denotes the electric charge of each particle, r their distance and ε0 the dielectric
constant. The strong nuclear force has an exponential decay on distance while the Coulomb
force is proportional to the inverse squared distance. For light elements the strong nuclear
force overwhelms the repellent Coulomb force due to the small distance of the nuclear particles.
In heavy isotopes the diameter of the nucleus is several times as large as the diameter of a
single proton or neutron and therefore the attractive strong nuclear force of oppositely placed
particles decays rapidly, so that the repulsive Coulomb force dominates. Further, this explains
why stability of heavy isotopes like uran (U) depends on the number of neutrons.

Nuclear binding energies are several orders of magnitude larger than chemical ones, which depend
on the electron sheath. This explains, why nuclear fusion or fission releases much more energy
than chemical reactions in relation to the fuel mass. Indeed mass deficit due to chemical reactions
is beyond measurement, but theoretically it exists, too.

Furthermore, Figure 1.1 shows, that fusion of hydrogen (H) to helium (He) releases much more
energy compared to fission of uran (U). Let the isotopes have a binding energy of ∆Einitial before
and ∆Eoutcome after fusion or fission. Then the energy gained is

Egain = ∆Eoutcome −∆Einitial.

Egain is positive with exothermic reactions and negative with endothermic ones.

The reaction of currently greatest interest is the fusion of deuterium (2D hydrogen with one
proton (p) and one neutron (n)) and tritium (3T hydrogen with one proton (p) and two neutrons
(n)). The reaction equation is

2D + 3T −→ 4He (3.5 MeV) + 1n (14.1 MeV), (D− Treaction)

where the energies in the brackets denote the kinetic energy (1eV = 1.6 · 10−19J) released with
the particle. 4He denotes an α-particle which is the nucleus of helium with two protons and two
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neutrons. The advantage of this reaction is the high energetic output that makes the process
very economical. The disadvantage is that the fast neutrons carry most of the energy and these
make the surrounding radioactive. However the neutrons can be used to breed new tritium from
lithium as tritium is a very rare isotope in the nature.

Other reactions like 2D + 2D and 2D + 3He have a much smaller cross section at temperatures
around 108 K and therefore are less economical nowadays.

Nuclear fission is already realized in economical power plants. Researchers try to find a way
to do this with nuclear fusion as well, because there is much more fuel available and it is less
dangerous, due to the fact that fusion stops immediately if conditions are not optimal. The
fusion reactor is fueled constantly, so there are only some grams of fuel inside it. Indeed fusion
of p +11 B + 34He does not produce any neutrons. Also, nuclear reactions do not produce any
green house gases.

The problem research suffers from is the ignition of fusion fuel in a controllable fusion device
with an output energy above the required input. For example, realization of an hydrogen bomb
is no problem, but this energy cannot be converted to electric power. It is the same problem
with thunderbolts: a huge amount of energy is released in a very short time.

1.1.2 Ignition of nuclear fusion

In order to actuate nuclear fusion one needs to overcome the substantial energy barrier of the
repellent electric force (Coulomb barrier) before attractive nuclear force preponderates and fusion
occurs.

There are several ways to achieve this:

1. beam-target fusion

2. beam-beam fusion

3. thermonuclear fusion

4. gravitational fusion

5. inertial fusion

6. magnetic fusion

In beam-target fusion one nuclei is accelerated and collides with a second one. If both nuclei
are accelerated it is called beam-beam fusion. These methods are highly inefficient because most
particles shun each other due to their electric charge.

To explain the other methods the following definitions are introduced.

Definition 1.1. In physics, a plasma is an ionized gas. By heating and ionizing a gas, electrons
are stripped away from atoms, so that positively charged nuclei and negatively charged electrons
move around more freely. The free electric charges make the plasma electrically conductive so
that it responds strongly to electromagnetic fields. Without external fields a plasma is quasi
neutral, i.e. the sum of positive and negative charge is macroscopically equal.

Definition 1.2. The fusion energy gain factor Q is the ratio of fusion power produced in a
nuclear fusion reactor compared to the power required to maintain the plasma in steady state:

Q =
Eproduced

Erequired
.

The ratio of Q = 1 is called break even. Above break even (Q > 1) there is a net gain of energy.
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Definition 1.3. The duration the plasma exists until it is destroyed by touching matter or
cooling is called confinement time.

Definition 1.4. The Lawson criterion, first derived by John D. Lawson in 1955 [22], is fulfilled
by a fusion reactor if after the ignition the fusion process is kept up only by the output energy of
itself and without further external energy sources. This condition is expressed in a lower bound
for the triple product nτT of the density n, the confinement time τ , and the plasma temperature
T . If the Lawson criterion is fulfilled, then the fusion energy gain factor satisfies Q ≥ 1.

The temperature is a statistical measure of the average kinetic energy of atoms or molecules, so
heating the fusion fuel produces fast particles that collide. Especially nuclei in the high energy
tail of Maxwell’s temperature distribution overcome the Coulomb barrier and fuse. Another
effect that lowers the required temperature is quantum tunneling. This means, that nuclei
without enough energy to overcome the Coulomb barrier tunnel through the barrier with a
certain probability. If nuclei are part of a plasma close to thermal equilibrium, it is called
thermonuclear fusion and the Lawson criterion is fulfilled.

Now we offer an overview on several ways to trigger the fusion process until we consider the
magnetic fusion in detail.

Gravitational fusion is realized in the sun and other stars. Via gravitation the huge masses
of stars lead to such high densities that the Lawson criterion is satisfied. But this requires a
minimum mass of a brown dwarf.

Inertial fusion is achieved when the temperature is raised so fast that matter cannot expand
before fusion has occurred. This effect is applied in laser fusion. A pulse of energy is applied to
the surface of a pellet of fusion fuel. This pulse is realized by a coherent laser (light amplification
by stimulated emission of radiation) beam, that is split and amplified before it hits the target
from all sides. The outer part of the particle expands and compresses the inner part to such a
high pressure and temperature, that fusion arises. Due to inertia the fuel is burned before the
pellet starts to explode. These tiny hydrogen bombs have a diameter of 1mm, only, to prevent
the target chamber from damage. The gained energy comes out with fast neutrons, that get
thermalized in the target chambers wall.

In magnetic fusion one confines plasma by magnetic fields. This will be explained in detail in
the next section.

1.2 Magnetic confined plasma

In a plasma, electrons are stripped off from the nuclei. There are mainly two species of particles:
positive charged nuclei and negative charged electrons. If particles hit a material surface they
neutralize and ionization energy is lost for the plasma. Therefore, a technique of confinement is
needed to separate the plasma from the reactors wall.

Definition 1.5. For better readability we introduce the following notation to distinguish scalars
and vectors. Vectors are printed bold, e.g., B is the vector of the magnetic field. The same
symbol not printed bold denotes the norm of the quantity, e.g., B := ‖B‖2.

Imposing a magnetic field B, particles with mass m, charge q and velocity v experience the
Lorentz force

FL = q v ×B. (Lorentz force)



1.2 Magnetic confined plasma 7

This force is always perpendicular to the magnetic field line and the direction of motion. It
causes gyration around a magnetic field line and the centripetal force

FZ =
mv

ρ

B × v

B
(centripetal force)

arises. It is directed to the gyration center. Thus Lorentz and centripetal force are anti parallel
and the larmor radius ρ of the gyration is obtained by the relation

FZ + FL = 0⇔
mv2

⊥
ρ

= q v⊥B ⇔ ρ =
mv⊥
qB

and the larmor frequency is

ΩL =
v⊥
ρ

=
qB

m
.

Total motion of particle is an endless helical trajectory with its gyration center confined on the
magnetic field line.

(a) toroidal coils only (b) Tokamak with transformer, safety factor q = 2

Figure 1.2: Essential parts of Tokamak device for magnetic confinement: toroidal field coils (1),
magnetic field lines and flux surface (2), primary coil (3) and iron core (4). Shafranov shift shifts magnetic
flux surfaces to the outer side. In (b) a transformer is added. An increasing continuous current is driven
through the primary coil. In the secondary coil—the plasma—a toroidal current is induced and a poloidal
field arises. Superposition of the initial toroidal field and the induced poloidal field screws up the magnetic
field lines. The minimal number of toroidal turns until a magnetic field line finishes one poloidal turn is
called safety factor, q = 2 in this Figure.

In order to keep the plasma in the fusion device magnetic field lines have to stay inside it without
penetrating matter. One possibility is the magnetic bottle: charged particles are trapped between
two magnetic mirrors.

Definition 1.6. A magnetic mirror is a nearly static magnetic field, but in the coils the magnetic
field lines run together and there the magnetic field strength increases. Charged particles gyrate
on a field line and move along with v‖. Its perpendicular velocity is v⊥. If v‖

v⊥
is greater then

a specific number, depending on field gradient, the particle feels a repellent force driven by the
Lorentz force of other field lines that have a component perpendicular to v‖.

The magnetic bottle was examined for fusion devices in the past, but suffered from too high
loss due to fast particles escaping. The concept is mentioned here, because in the device intro-
duced next there are mirroring effects, too, the so called neoclassical transport. It arises due to
inhomogeneous field strength.



8 Introduction to plasma physics

Definition 1.7. A torus is a geometric object, that is enclosed by

∂T (R0, r0) :=


xy
z

 ∈ R3

∣∣∣∣∣∣
xy
z

 =

(R0 + r0 cos(θ)) cos(ϕ)
(R0 + r0 cos(θ)) sin(ϕ)

r0 sin(θ)

 , ϕ, θ ∈ [0, 2π[

 .

R0 is called major radius, r0 minor radius, ϕ toroidal angle and θ poloidal angle.

The other idea of magnetic confinement is closing up magnetic field lines inside a vessel. Figure
1.2 shows several coils arranged in a torus shaped design. In the poloidal coils there is a direct
current. The magnetic field lines are perpendicular to the winding direction, i.e. toroidal coils
cause a toroidal magnetic field. Due to the different circumference at the inner and the outer mid
plane, the toroidal magnetic field is stronger at the inner side compared to the outer one. Let
Hϕ be the magnetizing field in toroidal direction, I the current and n the number of windings
in all toroidal coils together. By Amperes law∮

[0,2π]
H deϕ = 2πRHϕ(R) = nI ⇒ Hϕ(R) =

nI

2πR

the 1/R dependence is revealed.

The larmor radius varies within one gyration turn around the field line and causes the ∇B drift.
This is discussed in detail in the next section.

1.2.1 Drift motion of charged particles

Due to several forces beside the Lorentz force (FL), drift motion of charged particles arises.
Before introducing the physical effects, a general formula of drift motion is deduced. Let here be
B = Bez the static and homogeneous magnetic field, v the velocity of the particle, q its charge,
m its mass and F = Fey an arbitrary force. The equation of motion is

m
d

dt

[
vx

vy

]
= m

dv

dt
= F + FL = F + qv ×B =

[
qvyB

F − qvxB

]
d2

dt2
vx =

qB

m

d

dt
vy = −

(
qB

m

)2(
vx −

F

qB

)
= −Ω2

L(vx − vD)

and a general solution is

vx(t) = v0 sin (ΩLt+ ϕ0) + vD, vD :=
F

qB
.

The direction of the drift is perpendicular to F and B and the vectored drift velocity is

vD =
F ×B

qB2
. (1.2)

The drift velocity vD is independent of the particle mass m and therefore equal, except for the
sign, for electrons and protons.

Let the magnetic field be directed anticlockwise inside of the torus for further investigation.

In the tokamak the radial gradient of the magnetic field causes additional effects. Particles
gyrating on a field line move around this line and fly through regions of stronger and weaker
magnetic field strength. The larmor radius ρ depends on magnetic field strength and thus it
varies. More precisely, charged particles have a magnetic moment

µ =
mv2

⊥
2B

. (magnetic moment)
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In an inhomogeneous magnetic field the force

F∇B = −µ∇B

arises and causes a drift velocity

v∇B =
mv2

⊥
2qB3

B ×∇B. (∇B drift)

The magnetic field lines are circularly shaped and their curvature causes a centrifugal force

FZ =
mv2

‖

R
eR (centrifugal force)

and the drift velocity

vZ =
mv2

‖

qB2R
eR ×B

arises.

In the presence of an electric field E, there is an electric force

FE = qE

and a drift velocity

vE×B =
E ×B

B2
=

B ×∇φ
B2

(E ×B drift)

which is independent of the charge q.

Temporal variations of the electric field strength cause the drift velocity vE×B to vary in time.
This leads to a polarization force

FP = m
∂

∂t
vE×B

and to a polarization drift velocity

vP = − m

qB2

∂

∂t
E.

If the density n or the temperature T varies, there is a pressure gradient ∇p, a force

F∗ = −∇p
n

and a drift velocity

v∇p =
B ×∇p

qnB2
.

v∇B and vZ pull protons to the top of the vessel and electrons to the bottom. To prevent losses
of the plasma, the basic idea is to twist the torus and switch top and bottom while particles
follow its field lines. Then protons drift out at the upper half and back inside in the lower half
of the pipe. There are two possibilities to achieve the twisting. One is realized in stellarators by
deformation of toroidal coils and the other one in Tokamak by adding a transformer (see Figure
1.2). In this work the focus is on Tokamaks.
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1.2.2 Tokamak

∇B and drifts caused by the curvature create a charge separation in vertical direction and an
electric field E arises. E and B together generate the E × B drift, directed outwards for
electrons and ions. Thus the confinement is bad. To counteract this phenomena, the idea is to
torque the magnetic field lines and switch inside and outside within the toroidal turn.

In a Tokamak reactor a transformer is added, cf. Figure 1.2. An increasing continuous current
is driven through the primary coil. In the transformers secondary coil—the plasma itself—a
toroidal current is induced and a poloidal field arises. The superposition of the initial toroidal
field and the induced poloidal field twists the magnetic field lines. The minimal number of
toroidal turns until a magnetic field line completes one poloidal turn is called safety factor and
depends on the toroidal and poloidal field strengths Bϕ and Bθ, respectively and the major and
minor radii R and r, respectively.

q =
rBϕ

RBθ
(safety factor)

The transformer is useful for ohmic heating, as well. A disadvantage is the magnetic saturation
of the iron core, that demands an interruption of work in the range from several minutes up to
one hour, depending on the specific device.

Figure 1.3: Centers (dots) of magnetic flux surfaces (circles) are shifted outwards by Shafranov shift.
Particles in the scrape-off (SOL) layer hit the limiter. The gray zone is the edge layer. Right: there are
two coordinate systems (ξ, ψ) for neutral particles and (x, θ) for charged ones. a is the radius of the last
closed magnetic surface (LCMS), ξ the distance to the point of interest, r the radius of the flux surface
and ∆ the Shafranov shift.

The temperature T of the plasma is highest at the core and decreases radially to the edge.
The density n depends on the radial position, too, and hence a pressure gradient ∇p = ∇(Tn)
arises, pressing flux surfaces outwards. Additionally, there is the antagonistic Ampere force j×B
directed inwards. The balance of these forces results in the Grad-Shafranov equation

j ×B = ∇p (Grad-Shafranov)

and, due to the r dependence of the safety factor q in shifted magnetic surfaces, which are
illustrated in Figure 1.3.
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In this figure another essential part of the Tokamak is visualized: the limiter. The limiter is
an obstacle that limits the extension of the plasma tube to a specific size. It works like the
mechanism that creates wooden objects on a lathe. The limiter prevents the poloidal coils and
the wall to get touched and destroyed by the plasma. Although the plasma edge is much colder
than the plasma in the core, the limiter circulates the whole toroidal circumference in order to
distribute the heat load intensity on a large surface.

When ions or electrons touch the limiter they recombine to atoms. On the one hand energy Ei

is lost by radiation from recombination, but on the other hand neutralization allows to pump
out the fusion ash, i.e. helium (He). The ratio of particles that get lost by recombination at
the limiter, rather than flying back immediately into the plasma, is expressed by the recycling
coefficient Rrec.

Definition 1.8. The last closed magnetic surface (LCMS) is the out most magnetic surface that
is located before the limiter. The scrape-off layer (SOL) is the region of the plasma column where
the particles hit the limiter and get scraped off. Due to the different magnetic field strength in
radial direction, the inwards side of the plasma column is called high field side (HFS) and the
outwards one low field side (LFS), cf. Figure 1.3.

1.2.2.1 Adequate coordinate system

For neutral particles the coordinate system (er, eθ, eϕ) of the torus is a good choice, where the
unit vectors denote the radial, poloidal and toroidal direction, respectively. However, for charged
particles a suitable coordinate system takes the magnetic configuration into account, i.e. the
pitch angle due to the toroidal plasma current. Therefore, coordinates aligned to the magnetic
field lines (er, ey, e‖) are introduced. e‖ is defined parallel to the magnetic field line and ey is
perpendicular to er and e‖, i.e. ey is tangential to the magnetic flux surface and perpendicular
to the magnetic field line. With the magnetic field B = Bϕeϕ +Bθeθ, the relation between the
two coordinate systems is

e‖ =
Bθ

B
eθ +

Bϕ

B
eϕ

ey =
Bϕ

B
eθ −

Bθ

B
eϕ

⇐⇒
eθ =

Bϕ

B
ey +

Bθ

B
e‖

eϕ = −Bθ

B
ey +

Bϕ

B
e‖

(1.3)

In a circular Tokamak like TEXTOR (Tokamak experiment for technology orientated research
in Jülich, Germany) the coordinate system introduced above is fine. However, there are elongated
devices like MAST (Mega-Ampere spherical Tokamak in Culham, United Kingdom), where the
magnetic flux surfaces are ‘D’-shaped (cf. Figure 1.4). The following definition generalizes the
coordinate system for different magnetic geometries.

Definition 1.9. The poloidal cut through the flux surfaces of a ‘D’-shaped Tokamak MAST
is illustrated by the enclosed lines in Figure 1.4 (b), which is a generalization of the poloidal
direction. The direction perpendicular to each flux surface, which is the generalized radial
direction, is plotted by the lines from the center to the edge and named eχ. χ is the flux label
coordinate and constant on each flux surface, hence, ∇χ is perpendicular to each flux surface.
eη is the unit vector perpendicular to eχ and direction of magnetic field line e‖. The projection
of the η direction into poloidal plane are the ‘D’-shaped lines.

Remark 1.10. It holds
∇χ ‖ eχ, ∇η ‖ eη

and
eχ ⊥ eη ⊥ e‖ ⊥ eχ.
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(a) Magnetic surface of Tokamak MAST
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(b) Poloidal cut

Figure 1.4: (a) Magnetic flux surface of Tokamak MAST. The yellow lines are magnetic field lines
without plasma current and the black lines are magnetic field lines with plasma current and a safety
factor q = 2. At several positions the unit vectors (eχ, eη, e‖) and the directions eσ and eϕ are drawn.
(b) Poloidal plane of elongated and triangulated magnetic geometry with MAST parameters. The lines
from the center to the edge are (R,Z)(χ, σi) and the circular lines are (R,Z)(χi, σ) where the value with
sub index is plotted discretely and the one without is plotted continuously. The lines cross each other
right-angled.

Definition 1.11. Within the poloidal cut, σ generalizes the poloidal angle and denotes the
circumference coordinate of a specific flux surface normalized to the interval [0, 2π] (cf. Figure
1.4 (b)). It holds σ = 0 is the LFS and σ = π is the HFS.

1.3 Drift instabilities at the edge

The magnetic confinement is a nice concept to confine the electric charged particles of the
plasma. However, unavoidable inhomogeneities in the plasma parameters, like the density, the
temperature or the magnetic field strength cause drift instabilities where a flux of charged
particles moves perpendicular to the magnetic field lines. The losses due to the drift current are
an essential problem and methods reducing it are desired.

We start to describe the way drift waves create, the general features of instabilities and the
problem of resonant perturbations. A similar description is in [19] and the references therein.

1.3.1 Model of drift waves in plain geometry

The anomalous transport model in chapter 3 is based on the concept of drift waves. We introduce
the simplest case of a drift wave in the plain geometry. We assume the configuration with an
homogeneous magnetic field which is illustrated by the three vertical lines in Figure 1.5(a).
The electrons and the ions gyrate around the field lines. The positively charged ions and the
negatively charged electrons are distributed electrically balanced and there is not space charge.

We increase the density in the center of Figure 1.5(b). Nevertheless the density doubles in the
drawing, the change of the density is assumed to be very small. The density gradient accelerates
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(a) (b) (c) (d)

Figure 1.5: (a) displays 3 magnetic field lines with the positive charged ions and the negative charged
electrons in a quasi neutral condition. The increased density in the center of (b) is illustrated exaggerat-
edly. The pressure departs the lighter electrons from the center with a velocity v and the Coulomb force
F arises and pulls apart these electrons. The electrons of the adjacent field lines are affected, too. The
electrons on the field line in the middle turn back and pull away the electrons of the adjacent field lines.
The local peak of pressure recreates.

the light electrons away from the dense region while the heavier ions remain. The electrons
follow their field line to the top or bottom of the figure. (c) A charge separation arises and
creates the Coulomb force F that decelerates the electrons, but additionally pulls apart the
electrons of the adjacent field lines.

The velocity v of the electrons on the field line in the middle decreases and the electrons return
to the center. Finally the density peak is recreated and the whole process starts to repeat. The
perturbation propagates wavelike in the plane perpendicular to the magnetic field lines.

The mere oscillation of the electrons is not the essential problem. The essential problem arises if
there is a macroscopical density gradient that is perpendicular to the magnetic field lines which
is visualized in Figure 1.6 where the oscillation of Figure 1.5 proceeds perpendicular to the plain
of projection. For a proper description we assume the homogeneous magnetic field to be directed
in the z direction and the macroscopical density gradient to be directed in the x direction, i.e.,
B = Bez and ∇n0 = −∂n0

∂x ex, respectively.

Further, we neglect the movement of the ions due to their huge inertia in comparison to the
light electrons and assume that the temperature to remain constant (∇T = 0) within a small
density perturbation ñ. Thus, a perturbation of the pressure is expressed by a perturbation of
the density. The total density is n = n0 + ñ.

The electric potential perturbation φ̃ is connected to the electric field by the relation

Ẽ = −∇φ̃

and the electric field is related to the Coulomb force as

FC = qE,

where q denotes the charge of the affected particle.

The density perturbation and the electric field perturbation are coupled by the Boltzmann
relation

n = n0 exp

(
eφ̃

kBTe

)
, (Boltzmann relation)

where e denotes the electric charge of an electron, kB the Boltzmann constant and Te the
temperature of the electrons
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The linearization of this equation yields

ñ

n0
=

eφ̃

kBTe
, (1.4)

which in turn offers a relation between the density perturbation ñ and the perturbation of the
electric potential φ̃. Both perturbations have the same sign and are therefore in-phase. Due to
the oscillation and the linear dependence we describe the process by one Fourier mode

φ̃ = exp
(
i(kxx+ kyy − ωt)

)
ñ =

n0eφ̃

kBTe
exp

(
i(kxx+ kyy − ωt)

)
.

(1.5)

Figure 1.6: kη drift wave in plain geometry. Details are given in the text below.

In the next step we concern the density gradient

∇n0 = −∂n0

∂x
ex.

Due to (1.2), the electric field Ẽy in the y-direction creates a drift velocity

ṽx =
F̃y

eBz
=
Ẽy

Bz
=
−∂ eφ

∂y

Bz
= − ikyφ̃

Bz
(1.6)

and the continuity equation reads

− iωñ =
∂ñ

∂t
=
∂n

∂t
= ṽx

∂n0

∂x
(1.7)

where we assume ∂n0
∂t = 0 within a short period of time.
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Inserting (1.4) and (1.6) into (1.7) leads to the dispersion relation

ω = kyvDe (1.8)

with the phase velocity

vphase
y =

ω

ky
= vDe =

kBTe

eBz

1
n0

∂n0

∂x

equal to the diamagnetic electron drift velocity vDe .

The magnetic field was initially introduced to confine the charged particles on the field lines.
However, the drift velocity vx is perpendicular to the magnetic field lines. As long as ω ∈ R
(1.7) yields vx to be merely imaginary and thus there is no net flux. But if there is some kind of
resistivity ω becomes complex and a net flux arises. Within the drift current charged particles
escape from their field line. The drift current reduces the density gradient within a long period
of time. If we think of the Tokamak as it is displayed in Figure 1.6 the drift current is directed
radially outwards and transports the charged particles perpendicular to the magnetic field lines.

1.3.2 Instability and fluctuation

Definition 1.12. A system, initially in the state of equilibrium, is called unstable, if it does not
compensate a small perturbation, but reinforces disturbances and departs from the initial state.
An illustrative example is a ball resting on a spike. A closed system contains a finite amount
of energy only and therefore the increase of perturbation is bounded. The perturbation satiates
and either reaches a new, more stable position (ball lies in a valley) or oscillations arise if the
kinetic energy is not dissipated rapidly enough.

In the magnetic confined plasma inside a Tokamak the toroidal geometry causes periodic bound-
ary conditions and unstable modes arise on resonant surfaces. A magnetic flux surface is called
resonant if the safety factor q is rational. A turbulent mode is a short-range wavelike disturbance,
e.g. the plasma pressure, with a discrete number of modes, that depends on the geometry, i.e.
the path length of the magnetic field line until it closes up. Generally, many modes of different
growth rate are excited simultaneously.

The perturbations are triggered by some inhomogeneity like a density gradient. If the amplitude
of the perturbation reaches the magnitude of the initial cause (e.g. density gradient) it reacts
on its origin and becomes nonlinear. The feedback can rise to the level where the mode either
destroys itself or interferes with another one or saturates. The mode can become turbulent and
its amplitude fluctuates.

Such modes have a strong impact on the performance of the magnetic confinement. A full
understanding and technical manipulation of these modes make the radial particle and energy
flux controllable.

1.3.3 Universal drift instability

The drift equilibrium given by the Grad-Shafranov equation is unstable against perturbations
of the pressure. A small perturbation of pressure affects the plasma current j and the modified
current in turn causes a change of pressure. A drift wave with increasing amplitude arises.
Essentially, this happens in laboratory plasmas at the maximum of |∇p| or |ve−vi|, respectively,
and is called universal drift wave.
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Drift waves propagate primarily in the poloidal direction. Due to the periodic boundary condi-
tions, the wave length λθ of each mode is a multiple of the poloidal circumference 2πr

2πr = mθλθ, mθ ∈ N.

There is also a poloidal screwing of the drift wave with a mode number mϕ � mθ due to the
high parallel conductivity.

Definition 1.13. λa,b is the mean free path of particle of species a to collisions with particles
of species b, a, b ∈ {e, i, n}, where e, i, n denote electrons, ions and neutrals, respectively. If the
second index is missing, the mean free path to all other species is meant.

Due to the mass ratio of electrons and ions, the electrons react much quicker on perturbations,
than ions. Thus a drift wave is called collision free drift, when λe � λθ and drift resistive if
λe � λθ.

1.3.4 Resistive effects in Tokamak

As it is mentioned above, inhomogeneities in the Tokamak plasma create drift waves. Without
resistive effects the density and the potential perturbations are in-phase (=(ω) = 0) and the
amplitude is constant in time. Further, the continuity equation (1.7) yields the drift current to
by mere imaginary and there is no net flux perpendicular to the magnetic field lines.

A resistive effect leads to a phase shift between the density perturbation and the electric field
perturbation and ω becomes complex. The imaginary part =(ω) determines the temporal behav-
ior of the potential perturbation amplitude. By equation (1.5) it is obvious, that the amplitude
of modes with a positive growth rate =(ω) increases (unstable) and the amplitude of modes with
a negative growth rate decreases (stable) in time.

An illustrative example of how the energy transport depends on the phase shift is the excited
pendulum. It depends on the phase position of nudge whether the pendulum gains energy or
emits energy.

The model is highly simplified. Collisions of electrons and other species lead to resistive effects
and make the drift waves non-linear. Moreover the amplitude can vary spatially in regions of
different collisionality. In toroidal geometry, effects like a centrifugal force, a poloidal change in
the ratio of the plasma pressure and the magnetic field pressure and other aspects that cause
drifts—some have already been mentioned—come along. We postpone the discussion of these
effects to chapter 3 and now introduce the two most important resistive effects that are present
in the edge layer, the Drift Alvèn and the Drift Resistive Ballooning instability.

1.3.4.1 Drift Alfvén

In the plasma core, the pressure is much higher than at the edge, thus a radial pressure gradient
exists. Charged particles gyrate around the field lines. Their trajectories are helical curves, hence
the distance to the plasma core varies within each turn. The force of the pressure gradient is
directed radially outwards and the charged particles are accelerated in poloidal direction, where
the sign of direction depends on the electric charge. The plasma column starts to rotate. When
rotation speed differs with respect to poloidal position, there is resistivity and a drift current in
perpendicular direction arises, which is called drift Alfvén.
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1.3.4.2 Drift Resistive Ballooning

Drift resistive ballooning modes are unstable modes triggered by resistivity. Its name denotes
the fact that the amplitude of the perturbation wave and the corresponding transport depends
on the poloidal angle such that the maximum is at the outer side (LFS) and the minimum at
the inner side (HFS). The accumulation at LFS causes the ballooning character.

The physical background is the 1/R dependence of the magnetic field, such that the plasma
pressure

β ∝ nT

B2

is smaller at LFS than at HFS. In [23] and references therein it is shown that the poloidal
dependence of the magnetic field strength increases the resistivity at the LFS and thus makes
the mode more unstable there.

1.3.5 MARFE

As mentioned earlier, high densities are required to achieve the thermonuclear burn conditions
for a self sustaining Tokamak plasma. However, experiments revealed a limit on the maximal
achievable density, the so called Greenwald limit, at the edge. When this limit is exceeded, a
degradation of the plasma confinement or a disruption of the plasma discharge generally occurs.

One phenomena preceding the disruption at the density limit is multi faceted asymmetric ra-
diation from the edge (MARFE). It is a zone of high radiation causing a huge loss of energy.
Generally, it develops at the HFS, where heating power from the core is smaller due to the
shifted flux surfaces. When temperature drops, density rises, while the pressure p = n(θ)T (θ)
is (nearly) constant.

The radiative power density qrad is determined by the electron density ne, the impurity density nZ

and the cooling rate LZ, which is the radiation rate for the impurity. The relation qrad = nenZLZ

holds. Increasing density enhances the radiation power and consequently further cools down the
edge layer of the plasma, causing the density to increase even further. This self reinforcing
process is called radiation instability.

MARFE occurs in the whole toroidal direction. Depending on the heating and heat transport,
MARFE can be localized at one poloidal position (generally the HFS) or affects the whole edge
layer causing a detachment of the plasma from the SOL. Density limit can be increased by
additional heating.

A mechanism triggering the MARFE, is localized recycling of particles between the plasma
edge and the first wall. Energy losses are caused by charge exchange, ionization and heating
processes of the neutral influx. In a later chapter this is stated more precisely by equations and
some simulations on the poloidal position of neutral influx are done.
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Chapter 2

Introduction to eigenvalue problems

In this chapter we collect some basic definitions and propositions associated with the numerical
solution of eigenvalue problems. It is the knowledge which is required in the subsequent chapters
and is usually taught in lectures of linear algebra and numerical mathematics. [4] offers a very
comprehensive survey on the topic.

2.1 Definitions from linear algebra

Definition 2.1. The complex space C augmented by infinity ∞ is denoted by

C := C ∪ {z∞ | z ∈ C, |z| = 1}

Definition 2.2. Let be Mj ∈ CN×N , j = 1, . . . , d, N ∈ N. The function

P : C→ CN×N
, P (λ) :=

d∑
j=0

λjMj (matrix polynomial)

is called matrix polynomial of degree deg(P ) = d.

It is called singular, if det(P ) ≡ 0 and otherwise regular.

Definition 2.3. Let P : C → CN×N be a matrix polynomial. The pair (λ, x) with λ ∈ C and
x ∈ CN \ {0} is called an eigenpair of P if and only if

P (λ)x = 0. (polynomial eigenvalue problem)

The scalar λ is called eigenvalue and the vector x is called eigenvector. The aim to find such an
eigenpair is called polynomial eigenvalue problem.

Definition 2.4. One speaks of an eigenfunction instead of an eigenvector, if the eigenvector
approximates a function in function space.

Remark 2.5. If M0 = A and M1 = −I, the polynomial eigenvalue problem is the standard
eigenvalue problem

Ax = λx (standard eigenvalue problem)

and it is a generalized eigenvalue problem

Ax = λBx (generalized eigenvalue problem)

if M0 = A and M1 = −B.
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Lemma 2.6. A generalized eigenvalue problem

Ax = λBx

can be reduced to a standard eigenvalue problem if and only if A or B are regular.

Proof. If B is regular, B−1 exists and

(B−1A)x = λx

is a standard eigenvalue problem.

If A is regular, A−1 exists and

x = λA−1Bx ⇔ µx =
1
λ
x = (A−1B)x

is a standard eigenvalue problem on the inverse eigenvalue.

Lemma 2.7. Polynomial eigenvalue problems P (λ)x = 0 of dimension N × N with degP =:
d ≥ 2 can be reduced to a generalized eigenvalue problem of size dN × dN . It has dN eigenpairs
(including multiplicities).

Proof. The proof is done by two out of many possible linearizations. I is the identity matrix
with ones on the diagonal and zero else. Then one has

P (λ)x =
d∑

j=0

λjMjx = 0

⇐⇒

λ

M1 M2 M3 . . . Md

I
I

. . .
I

+


M0

−I
−I

. . .
−I






x
λx
λ2x
...

λd−1x

 = 0,

Another linearization, called companion form, is given byλ

Md

I
I

. . .
I

+


Md−1 Md−2 Md−3 . . . M0

−I
−I

. . .
−I






λd−1x
λd−2x
λd−3x

...
x

 = 0.

Remark 2.8. Both linearizations are equivalent, but the numerical stability and efficiency of
numerical algorithms might be different. It is possible to replace the identity matrices in each
block row by any regular matrix. If Md is regular with a small condition number, the second
linearization allows to reduce the generalized eigenvalue problem to a standard one. There are
other possibilities to arrange the blocks in the linearization, however a diagonal matrix and an
upper block Hessenberg seem to be the best structures for a generalized eigenvalue equation. This
becomes more clear after the QZ algorithm, the state of the art technique to solve generalized
eigenvalue problems, is analyzed in section 2.2.2 on page 27.
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Remark 2.9. If the matrix polynomial contains structure, that specifies its eigenvalues, for
example it is symmetric, skew symmetric, Hermitian or skew Hermitian, then it is a good
idea to choose the linearization wisely and preserve these features by permutation of rows and
columns. The eigenvalue problem concerned in this thesis is complex symmetric, which does not
offer any information about its eigenvalues. Therefore the linearization is not considered here,
further.

Remark 2.10. The eigenvectors of polynomial eigenvalue problems of deg p > 1 are linearly
dependent.

Definition 2.11. Let be M ∈ CN×N . The null space of M is

N (M) :=
{
x ∈ CN |Mx = 0

}
and the range is defined by

R(M) :=
{
z ∈ CN | z = Mx, x ∈ CN

}
.

Definition 2.12. The characteristic polynomial pP of a matrix polynomial P is defined by

pP (λ) := det
(
P (λ)

)
Lemma 2.13. Polynomial eigenvalue problems P (λ)x = 0 can have infinite eigenvalues. The
degree g := deg pP of the characteristic polynomial pP is at most dN and the missing dN − g
roots are defined as infinite eigenvalues. The generalized eigenvalue equation

Ax = λBx

with N (A) = {0} has dimN (B) = N − rank(B) infinite eigenvalues.

Proof. Each polynomial eigenvalue problem of degP > 1 is equivalent to a generalized eigenvalue
problem. Let 0 6= y ∈ N (B), then it holds y /∈ N (A) and

µ Ay︸︷︷︸
6=0

= By = 0 ⇒ 0 = µ =
1
λ
⇒ λ =∞

To proof the number of infinite eigenvalues, we take a similarity transformation Y BY −1 = J to
Jordan canonical form. The N − rank(B) last rows of J are zero and thus the degree of

pP (λ) = det(A− λB) = det(Y AY −1 − λY BY −1) = det(Y AY −1 − λJ)

is g = rank(B).

Remark 2.14. In case N (A) ∩N (B) 6= {0} the undefined eigenvalues are called infinite, too.

Remark 2.15. Standard eigenvalue problems have no infinite eigenvalues because the “B”
matrix is the identity I and N (I) = {0}.

Definition 2.16. For A ∈ CN×N , x ∈ CN , the Rayleigh quotient is defined by

ρA(x) :=
xHAx

xHx
.

Lemma 2.17. Let be x ∈ CN the eigenvector of A ∈ CN×N with the eigenvalue λ ∈ C. It holds

λ = ρA(x) =
xHAx

xHx
.
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Subsequent definitions and propositions are given that deal with the eigenvalue enclosure.

Definition 2.18. Let A ∈ CN×N be a matrix. The set

F(A) :=
{
ρA(x) | x ∈ CN \ {0}

}
of all Rayleigh quotients is denoted as the field of values [14, 17] of A.

The relation of the field of values to the set of the eigenvalues yields the following lemma.

Lemma 2.19. Let A ∈ CN×N be a matrix and λ(A) be the set of all eigenvalues, then

λ(A) ⊆ F(A).

If A is normal, i.e. AHA = AAH , it holds

conv
(
λ(A)

)
= F(A),

where conv denotes the convex hull.

Now, the concept of the field of values is extended for polynomial eigenvalue equations (cf. [21]).

Definition 2.20. Let P : C→ CN×N be a matrix polynomial. The field of values of the matrix
polynomial eigenvalue equation is defined as

F(P ) :=
{
roots(xHPx) | x ∈ CN \ {0}

}
,

where
roots(xHPx) :=

{
λ ∈ C | xHP (λ)x = 0

}
.

Remark 2.21. Let A ∈ CN×N be a matrix. For the matrix polynomial P (λ) = A−λI definition
2.20 implies 2.18.

Definition 2.22. [25] Let P : C → CN×N be a matrix polynomial. P is called weakly normal
if there is a unitary matrix U ∈ CN×N such that UHP (λ)U is diagonal for all λ ∈ C.
If, in addition, every diagonal entry of U∗P (λ)U is a polynomial with exactly N deg(P ) distinct
zeros, or equivalently, all the eigenvalues of P are semisimple (i.e., for each eigenvalue the
algebraic and the geometric multiplicity are equal), then P is called normal.

Remark 2.23. Let P be a weakly normal matrix polynomial. The left and the right eigenvector
of each eigenvalue λ of P are equal.

The relation between the field of values of an eigenvalue polynomial and its projection onto a
subspace R(V ) offers the next lemma.

Lemma 2.24. Let P : C→ CN×N be a matrix polynomial and V ∈ CN×k a matrix. It holds

F(V HPV ) ⊆ F(P )

Proof.

F(V HPV ) =
{

roots(yHV HPV y) | y ∈ Ck \ {0}
}

=
{

roots(xHPx) | x = V y, y ∈ Ck \ {0}
}

⊆
{
roots(xHPx) | x ∈ CN \ {0}

}
= F(P )

Remark 2.25. F(P ) is still a colsed set, but it needs not to be connected or bounded [21]. The
field of values of a normal matrix polynomial is not the convex hull of the eigenvalues in general.
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2.2 Numerical methods for eigenvalue problems

In linear algebra, eigenvalues of linear eigenvalue equations are roots of the characteristic poly-
nomial pP . However, there is no analytic formula to obtain the roots of polynomials larger than
degree 4 (deg pP > 4) explicitly and something like Newton iteration is necessary. Additionally,
determining the eigenvalues from the coefficients of the characteristic polynomial is numerically
unstable. Tiny errors in the coefficients often lead to huge loss of precision of the roots. Eval-
uating the characteristic polynomial directly is more stable at the one hand, but cost-intensive
on the other hand. The effort to calculate a determinant of a matrix rises exponentially with
its dimension. Hence, the characteristic polynomial is only appropriate for very small problems
and theoretical considerations.

In numerical mathematics several different techniques to calculate the eigenpairs have been
developed. These techniques can be divided into two main groups. First, the algorithms for
medium sized problems, that calculate one up to all eigenvalues and secondly the methods for
huge eigenvalue equations, that calculate only a few eigenpairs projecting the huge problem onto
a much smaller search space, which is build up within the algorithm. The projected system is
small enough to be solved by techniques of the former group.

We start to recapitulate the basic algorithms for small eigenvalue equations up to the state of
art techniques which are the QR and QZ algorithm. A more complete survey is [4]. Afterwards
we introduce the Jacobi-Davidson method for large problems.

2.2.1 Standard algorithms

2.2.1.1 Power method

In order to solve the standard eigenvalue problem Ax = λx where A ∈ CN×N , ‖x‖ = 1, the
simplest algorithm is the power method. Let (λj , xj)j=1,...,N be the exact eigenpairs ordered by
modulus: |λ1| ≥ |λ2| ≥ . . . ≥ |λN |.

We assume |λ1| > |λ2|. A vector y0 ∈ CN satisfying yH
0 x1 6= 0 and ‖y0‖2 = 1 can be written as

a linear combination of the eigenvectors xj

y0 =
N∑

j=1

βjxj .

The idea of the power method is to apply A on y0

Ay0 =
N∑

j=1

βjAxj =
N∑

j=1

βjλjxj

several times

Aky0 =
N∑

j=1

βjλ
k
jxj = β1λ

k
1x1 +O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)

until the direction of x1 strongly dominates. This idea leads to Algorithm 1.

The power method only works, if the modulus of the largest eigenvalue is simple and y0 is not
perpendicular to x1. When |λ1| = |λ2| > |λ3| is not simple, this method only works, if yH

0 x1 6= 0
and yH

0 x2 = 0. However, this is numerical highly unstable. Summing up the basic features of
this method:
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• convergence if η :=
∣∣∣λ2
λ1

∣∣∣ < 1 and xH
1 y0 6= 0.

• approximation ρ(yk) = λ1 +O(ηk), slow if η ≈ 1.

• finds λ1 only.

Algorithm 1 Power method
Initial guess ‖y0‖2 = 1.
for k = 0, 1, . . . , l do
zk+1 = Ayk // power

ρk = yH
k zk+1 // Rayleigh quotient yH

k Ayk

yH
k yk

yk+1 = zk+1

‖zk+1‖2 // avoid over and underflow
end for
(ρl, yl) is approximation of eigenpair (λ1, x1).

Definition 2.26. Let be A ∈ CN×N , a shift µ ∈ C is a multiple of the identity matrix subtracted
to A:

Ã = A− µI

2.2.1.2 Inverse power method with shift

A method, that can find interior eigenvalues as well as exterior ones, is the inverse power method
with shift. The idea of this method is to apply the power method on A−1 or on the inverse of
the shifted matrix (A− µ0I)−1. The eigenvalues of A−1 are the inverse eigenvalues of A. Thus,
the inverse power method finds the eigenvalue closest to zero. The smallest eigenvalue of the
shifted matrix A− µ0I is the eigenvalue of A closest to µ0. Therefore this method can find any
simple eigenvalue, when an appropriate guess µ0 is available.

The numerical effort in calculating the inverse matrix is in O(N3). However it is not necessary
to know the inverse. It is sufficient to be able to solve the linear equation systems. The following
definitions offer a method to do this with less effort.

Definition 2.27. For a regular matrix A ∈ CN×N the LU decomposition

LU = A

consists of a lower triangular matrix L and an upper triangular matrix U . All the diagonal
entries of L are equal to one. The factors L and U are obtained by Gaussian elimination, if
necessary with row interchanges collected in a permutation matrix P:

LU = PA

Remark 2.28. Systems of linear equation Ax = b (A ∈ CN×N , b ∈ CN ) can be solved by
backward and forward elimination from the LU decomposition as follows

LUx = Ax = b ⇐⇒

{
Ly = b

Ux = y

}
.

The equation Ly = b is solved by forward elimination and afterwards Ux = y is solved by
backward elimination. Calculating the inverse A−1 of A has a computational cost of solving N
linear systems by one LU decomposition.
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The inverse power method with shift is described in Algorithm 2. Its basic features are

• it converges if η := maxm6=j

∣∣∣ λj−µ0

λm−µ0

∣∣∣ < 1 and xH
j y0 6= 0

• it finds the eigenvalue λj closest to µ0

• its approximation ρ(yk) = λj +O(ηk) is slow, if η ≈ 1

Algorithm 2 Inverse power method with shift
Initial guess ‖y0‖2 = 1.
µ0 initial guess for desired eigenvalue.
Calculate LU decomposition of A− µ0I.
for k = 0, 1, . . . do

Solve (A− µ0I)zk+1 = yk with LU decomposition.
yk+1 = zk+1

‖zk+1‖2 // avoid over and underflow
ρk = ρA(yk+1) = yH

k+1Ayk+1 // Rayleigh quotient
end for

An improvement of the inverse power method with shift is the Rayleigh quotient iteration (Al-
gorithm 3). The shift µ0 is applied in first iteration and in subsequent iteration, A is shifted by
the Rayleigh quotient, which is the best known approximation of the desired eigenvalue. The
convergence rate is squared, but the LU decomposition has to be recalculated in each loop.

Summing up, the Rayleigh quotient iteration

• converges if η0 := maxm6=j

∣∣∣ λj−µ0

λm−µ0

∣∣∣ < 1 and xH
j y0 6= 0.

• finds an eigenvalue λj close to µ0.

• if η0 < 1: ηk := maxm6=j

∣∣∣ λj−µk

λm−µk

∣∣∣� 1, limk→∞ ηk = 0.

• approximation ρ(yk) = λj +O(η2k
0 ).

• recalculation of LU decomposition in each step is expensive

• converges quadratic

A possible variant of the Rayleigh quotient iteration is to update the shift and recalculate the
LU decomposition not in each cycle, but after a few ones.

Algorithm 3 Rayleigh quotient iteration
Initial guess ‖y0‖2 = 1.
µ0 initial guess for desired eigenvalue.
for k = 0, 1, . . . do

Calculate LU decomposition of (A− µkI).
Solve (A− µkI)zk+1 = yk with LU decomposition.
yk+1 = zk+1

‖zk+1‖2 // avoid over and underflow
ρk = ρA(yk+1) = yH

k+1Ayk+1 // Rayleigh quotient
µk := ρk // set shift to Rayleigh quotient

end for
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2.2.1.3 QR algorithm

State of art in calculating all eigenvalues of a matrix A ∈ CN×N , where N is not too large, is
the QR algorithm with shift (Algorithm 5).

Definition 2.29. The QR decomposition of a matrix A ∈ CN×N is

A = QR

where Q ∈ CN×N is unitary and R ∈ CN×N an upper triangular matrix. The decomposition
can be calculated by Householder transformations or Givens rotations. R is unique except for
unitary diagonal transformations.

Within the QR algorithm

Ak+1 := RkQk = QH
k AkQk = (Qk−1Qk)HAk−1(Qk−1Qk) = Q̂H

k A0Q̂k

is a unitary similarity transformation. In the end the approximations to the eigenvalues of A
are on the diagonal of Ak, that is an upper triangular matrix [4].

Definition 2.30. A matrix H is upper Hessenberg if all elements below the first sub-diagonal
are zero.

H =


∗ · · · · · · ∗

∗ . . . . . .
...

. . . . . .
...

∗ ∗


The variant of the QR algorithm without shift often converges very slowly. A clever choice
of the shifts accelerates the convergence. Before the choice of shifts can be explained, some
numerical details on the QR algorithm have to be given. The computational effort of the QR
decomposition is generally in O(N3). However, it is in O(N2) for upper Hessenberg matrices,
because there are non-zeros only on the first sub-diagonal.

In the QR algorithm, A is unitary transformed to an upper Hessenberg matrix H at first. The
QR algorithm is applied to H, which has the same eigenvalues as A. Within the QR algorithm,
H remains upper Hessenberg.

If H is upper Hessenberg and if the entry hN,N−1 is eliminated, one eigenvalue is equal to the
entry in the lower right corner and the problem can be reduced to H := (hi,j)i,j=1,...,N−1. This
is achieved applying the Wilkinson shift: the two eigenvalues of the 2×2 block in the lower right
corner [

hN−1,N−1 hN−1,N

hN,N−1 hN,N

]
are calculated analytically and the eigenvalue closer to hN,N is chosen as shift.

Algorithm 4 QR algorithm
A0 := A
for k = 0, 1, . . . do

Calculate QR decomposition Ak = QkRk.
Ak+1 := RkQk

end for
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Algorithm 5 QR algorithm with shift
A0 := A
for k = 0, 1, . . . do

Choose a shift µk. // e.g. Wilkinson shift
Calculate QR decomposition Ak − µkI = QkRk.
Ak+1 := RkQk + µkI // undo shift

end for

2.2.2 Solving generalized eigenvalue problem

For the generalized eigenvalue problems

Ax = λBx

the power method is not applicable. However, the inverse power method with shift is realizable
in the way that the shift µI is replaced by µB, where µ is some guess for the desired eigenvalue
of

(A− λB)x = 0.

The Rayleigh quotient variant works as well.

2.2.2.1 The QZ algorithm

The QZ algorithm plays the role of the QR algorithm for generalized eigenvalue equations and
calculates all the eigenvalues.

Definition 2.31. For two matrices A,B ∈ CN×N the QZ decomposition (also named generalized
Schur decomposition) consists of two different unitary matrices Q and Z ∈ CN×N , such that
Â := QAZ is upper Hessenberg and B̂ := QBZ is upper triangular.

For unitary matrices Q,Z the similarity transformations

Ax = λx

⇔ QAQHy = λQQHy = λy, y = Qx

and
Ax = λx

⇔ ZHAZy = λZHZy = λy, y = ZHx

do not change the eigenvalues. Analogously the pre- and post-multiplication of unitary matrices

Ax = λBx

⇔ QAZy = λQBZy, y = ZHx

⇔ Ây = λB̂y, y = ZHx

do not change the eigenvalues. When Â and B̂ are upper triangular, the eigenvalues can be
picked from the diagonal elements

λj =
âj,j

b̂j,j
, j = 1, . . . , N.
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In order to calculate the QZ decomposition for the generalized eigenvalue equation Ãx = λB̃x,
first B̃ is transformed to an upper triangular matrix B by QR decomposition B̃ = Q̃B

Ãx = λB̃x

⇔ Ax = λBx, A = Q̃HÃ

⇔


a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN



x1

x2
...
xN

 = λ


b11 b12 · · · b1N

0 b22 · · · b2N
...

. . . . . .
...

0 · · · 0 bNN



x1

x2
...
xN


Now the Givens rotation QN−1,N is applied from the left to eliminate aN,1

QN−1,NA =


a11 a12 · · · a1N
...

...
. . .

...
aN−2,1 aN−2,2 · · · aN−2,N

a′N−1,1 a′N−1,2 · · · a′N−1,N

0 a′N2 · · · a′NN

 .

However, fill-in occurs below the diagonal of B at position (N,N − 1):

QN−1,NB =



b11 b12 · · · b1,N−1 b1N

0 b22 · · · b2,N−1 b2N
...

. . . . . .
...

...
0 · · · 0 bN−2,N−1 bN−2,N

0 · · · 0 b′N−1,N−1 b′N−1,N

0 · · · 0 b′N,N−1 b′N,N


.

To remove the fill-in, another rotation ZN−1,N is applied from the right. Fortunately, ZN−1,N

does not remove any of the produced zeros in left lower corner of A. The Givens rotations can
be applied by this procedure until A is upper Hessenberg. From there on, further rotations will
destroy zeros again.

QAZ =: H is upper Hessenberg and QBZ =: U is still upper triangular and the generalized
eigenvalue problem

Hy = λUy

remains. If U is not invertible, there is at least one infinite eigenvalue. It can be obtained from
the null-space of U and it can be eliminated. Hence, without loss of generality we assume, that
B is invertible and end up with the standard eigenvalue problem

HU−1z = λz

Note that the inverse U−1 is upper triangular, since U is.

To apply one step of the QR algorithm

HU−1 = QR = QR̃U−1,

requires a QR decomposition of H only, which is less expensive since H is upper Hessenberg.
However, to obtain the Wilkinson shift, one needs to know the bottom right 2 × 2 block of
HU−1. This block can be generated from the bottom right 2× 3 block of H and the 3× 2 block
of U−1. Due to the upper triangular shape, the latter one is obtained by Gaussian elimination
of the bottom right 3× 2 block of U . The remaining part is analogous to the QR algorithm.
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2.2.3 Solving polynomial eigenvalue problems

Algorithms to solve standard and generalized eigenvalue problems are listed above. The poly-
nomial eigenvalue equation P , with degP ≥ 2, can be solved by standard eigenvalue problem
solvers by linearization. The inverse power method and Rayleigh quotient iteration are applica-
ble directly.

2.2.4 Classification

According to [4] we define the following classification of algorithms:

Definition 2.32. We denote the QR and QZ algorithms as direct solvers in contrast to the
algorithms for large eigenvalue problems which are introduced in the next section and denoted
as iterative solvers.

Remark 2.33. A direct algorithm must still iterate, since finding eigenvalues is mathematically
equivalent to finding zeros of polynomials, for which no noniterative methods can exist beyond
the dimension 4. We call a method direct if experience show that it (nearly) never fails to
converge in a fixed number of iterations.

2.3 Numerical methods for large eigenvalue problems

Theoretically, the numerical algorithms mentioned above are applicable for arbitrary dimensions.
But practically, they are limited by memory restrictions and computational time. The effort
of the QR algorithm is in O(N4) and cannot be handled for large N on current computers.
In this section numerical methods are introduced, that calculate a few eigenvalues with less
computational cost.

Huge eigenvalue problems often arise from discretized partial differential equations. One common
feature of discretizing derivatives by finite differences (cf. section 4.2.1 on page 49) is the fact,
that the matrices are sparse. One idea to reduce memory requirement and computational effort
of matrix vector products is to save non-zero entries, only.

Definition 2.34. A matrix S ∈ CN×N is called sparse, if there are only O(N) entries non-zero.
It is called dense or full, if O(N2) elements are non-zero.
The positioning of zero and non-zero entries is called sparsity pattern.

Remark 2.35. Let A,S ∈ CN×N , A full, S sparse, v ∈ CN . The computational cost of the
matrix vector product Av is in O(N2) and Sv in O(N).

Definition 2.36. Let V ∈ CN×k, (k < N) be a basis of a k-dimensional subspace of CN×N and
let P be a matrix polynomial. The pair (ν, y), ν ∈ C, 0 6= y ∈ R(V ) is called Ritz pair if and
only if

P (ν)y ⊥ R(V )

holds. In particular, y is called Ritz vector and ν a Ritz value.

2.3.1 Jacobi-Davidson method

The Jacobi-Davidson method was initially proposed as a solution technique for standard eigen-
value problems [10], but it works with polynomial eigenvalue problems as well [32]. Here, the
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polynomial case is described, which can be easily restricted to the special case of a standard
eigenvalue problem.

The idea of Davidson is to approximate the initial problem

P (λ)x = 0

by a projection onto a low-dimensional search space, spanned by the orthonormal columns of
the matrix V :

V HP (ν)V y = 0.

Due to much lower dimension, the projected system can be solved by a direct solver, i.e.,
linearization and applying QZ algorithm on the generalized eigenvalue equation. The solution of
the projected system is linked to an approximation of the original one by the Galerkin condition

u = V y, P (ν)u =: r ⊥ R(V ),

thus (ν, u) is a Ritz pair.

This method is efficient, if the dimension of search space V remains small. On the other hand,
the accuracy of the approximation V y depends on the angle between the desired eigenvector x
and the search space R(V ). This angle must be small for a proper approximation. Therefore,
the search space needs to be expanded carefully.

The idea to expand the search space V by the residual r is formally equivalent to the Arnoldi
process. In the original algorithm, Davidson expanded the search space by

t = −
(

diag
(
P (ν)

))−1
r,

which works well with strongly diagonal dominant matrices. To take t = P (ν)−1r is equivalent
to the inverse power method with shift. The inversion is expensive and the result is dense in
general.

At this point, the idea of Jacobi comes into play. The current Ritz pair (ν, u) is improved by an
update (η, v) such that

P (ν + η)(u+ v) = 0.

This is a nonlinear equation that cannot be solved directly, but a Newton step can be applied
on the system

f(λ, x) :=
(
P (λ)x
xHx− 1

)
= 0. (2.1)

The first block line is the original eigenvalue equation and the bottom row is a normalization of
the eigenvector, such that ‖x‖2 = 1. The latter one cures the rank deficiency.

The Newton iteration requires the derivative

Df(λ, x) =
(
P ′(λ)x P (λ)

0 2xH

)
. (2.2)

Let (ν, u) be a Ritz pair of P with respect to the search space R(V ). It holds u ∈ R(V ) and
therefore

P (ν)u = r ⊥ u. (2.3)

Now f is linearized at the Ritz pair (ν, u) and a correction step (η, v) is added to find an improved
eigenvector x = u+ v and an eigenvalue λ = ν + η such that

Df(ν, u)
(
η
v

)
= −f(ν, u) ⇔

(
P ′(ν)u P (ν)

0 2uH

)(
η
v

)
=
(
−r
0

)
(2.4)
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We multiply the first block line by uH from the left and get

ηuHP ′(ν)u+ uHP (ν)v = −uHr = 0 ⇔ η = − u
HP (ν)v

uHP ′(ν)u
. (2.5)

The second block line demands

v ⊥ u ⇔
(
I − uuH

uHu

)
v = v (2.6)

an orthogonal projection onto u⊥.

Finally, equation (2.5) and (2.6) are linked to the correction equation(
I − P ′(ν)uuH

uHP ′(ν)u

)
P (ν)

(
I − uuH

uHu

)
v = −r. (2.7)

The new direction v is then orthonormalized to the search space V and added to V :

V := orth(V, v).

The correction equation enlarges the search space until the approximation is sufficiently accurate.
In order to keep k � N it might be necessary to apply restarts or deflation. At a restart the
search space is set to the current eigenvalue approximation (V = u), while the deflation skips
certain columns of V , but not all. A possible deflation strategy is to keep the last l columns
where l� N .

Algorithm 6 Jacobi-Davidson algorithm

Require: matrix polynomial Pl(ν) =
∑l

j=0 ν
lMj , Mj ∈ CN×N .

choose an initial search space V = [v1, . . . , vk] ∈ CN×k, 1 ≤ k � N .
loop

orthonormalize V .
calculate Wj := MjV and Hj := V HWj for j = 0, . . . , l.
calculate desired eigenpair(s) of projected equation P̃l(ν) :=

∑l
j=0 ν

jHjy = 0, ‖y‖ = 1.
calculate Ritz value in original space u := V y.
calculate w := P ′l (ν)u =

∑l
j=1 ν

j−1Mju
calculate residual r := Pl(ν)u.
if ‖r‖ < tolerance then

stop
end if
solve correction equation (approximately)

(
I − wuH

uHw

)
Pl(ν)(I − uuH)t = −r

expand search space V := [V, t].
end loop

2.3.2 Solving the correction equation

The correction equation (2.7) is derived from one Newton step. Therefore, it is not necessary
to solve it exactly, but approximately. However, the convergence speed of the outer Jacobi-
Davidson algorithm depends on the level of the precision. Therefore one has to find the optimal
balance.

The generic form of the correction equation (2.7) is

XPY v = −r, where X :=
(
I − P ′(ν)uuH

uHP ′(ν)u

)
, Y :=

(
I − uuH

uHu

)
and P := P (ν). (2.8)
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The projections X and Y are sparse matrices and in many applications P is sparse too. In
the following considerations we assume P to be sparse. Although X, Y and P are sparse, the
product XPY is dense in general. To make use of the sparsity iterative solver have to be applied
on (2.8). This class of solvers works with matrix vector multiplications that can be realized as
XPY v = X(P (Y v)). The iterative solvers require preconditioners specified as approximations
K for XPY such that the equation Kt = r can be solved relatively easily. The simplest idea is
to chose K as the diagonal or the upper or lower triangular part of XPY .

2.3.2.1 Inverse projection

The iterative solvers for (2.8) require a suitable preconditioner K. The standard ideas like
taking the diagonal or the upper or lower triangular part of the matrix XPY are not efficient
and cannot make use of the particular structure of the equation.

In [32] Sleijpen et al. considered to take the projections into account. We assume to have an
approximation Q such that QP ≈ I holds and define the preconditioner

K := XQ−1Y.

The inverse K−1 of the preconditioner is required in order to apply it as K−1XPY v = −K−1r.
The projections cause K to be singular with null space spanned by u. We are only interested in
the solution perpendicular to u. Therefore the pseudo inverse

K−1 = Y QX

is taken. We call K−1 pseudo inverse because

K−1(Kv) = v ∀v : vHu = 0

A projection applied once has the same effect as applying it twice and due to u ⊥ r, Xr = r the
preconditioned correction equation reads

Y QXPY v = −Y Qr. (2.9)

Now iterative solvers like generalized minimal residual (GMRES) [30] or the biconjugate gradi-
ents stabilized method (BiCGstab) [41] can be applied to (2.9).

2.3.2.2 One step approximation

Sleijpen et. al [34] suggested the one step approximation as a method to solve the correction
equation (2.7) without additional iterative solver if a good approximation Q(ν) of P (ν) is avail-
able.

We deduce the formula. The Newton equation (2.4) is multiplied by an (approximate) inverse
Q(ν) satisfying Q(ν)P (ν) ≈ I

ηQ(ν)P ′(ν)u+Q(ν)P (ν)v = −Q(ν)r, uHv = 0

⇒ ηQ(ν)P ′(ν)u+Q(ν)r + v ≈ 0.

The multiplication of uH from the left leads to

ηuHQ(ν)P ′(ν)u+ uHQ(ν)r + uHv︸︷︷︸
=0

= 0 ⇒ η = − uHQ(ν)r
uHQ(ν)P ′(ν)u

.
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Once an expression of η is found, the new direction is

v =
uHQ(ν)r

uHQ(ν)P ′(ν)u
Q(ν)P ′(ν)u−Q(ν)r (2.10)

Remark 2.37. When Q(ν) is an exact inverse, one step approximation is equivalent to the
exact Newton step.

Remark 2.38. It is not necessary to calculate the matrix Q. It is sufficient to solve the linear
systems

P (ν)x = r and P (ν)y = P ′(ν)u,

where x and y are the unknown variables.

The advantage of the one step approximation compared to apply iterative solver on the correction
equation is the fact, thatQ(ν) is related to the original matrix polynomial evaluated at ν and thus
the structure remains, while projections destroy it. One method to calculate the approximate
inverse Q(ν) is the incomplete LU decomposition. In Chapter 4 we will find a very efficient way
to calculate the approximate inverse Q of the anomalous transport eigenvalue equation P which
is introduced in the next chapter.

2.4 Error bounds

The Jacobi-Davidson Algorithm 6 stops if the residual is below a threshold. However, this does
not give any information about the accuracy of the eigenvalue. From numerical linear algebra
it is known [13] that the forward error depends on the residual and the condition number. In
this section we describe a practical method to estimate the forward error.

2.4.1 Condition number

The condition number associated with the matrix is a measure of that problem’s amenability to
numerical computation, that is, how numerically well-conditioned the problem is. A problem
with a low condition number (close to 1) is said to be well-conditioned, while a problem with
a huge condition number is said to be ill-conditioned. Computing the condition number is
practically difficult. Hence the component wise condition number κc [13] is favorable in practical
numerics.

The matrix polynomial

P (λ) =
d∑

k=0

λkMk

turns into a matrix when it is evaluated at λ. Here, the condition number with respect to an
eigenpair is of interest. Let (λ, x, y) be an eigentriple, where y is an approximate left eigenvector,
x an approximate right eigenvector and λ the approximate eigenvalue of P . Then the component
wise condition number is defined (Betcke [5]) as

κc(P, λ, x, y) :=
|y|HM |x|
|λ||yHP ′(λ)x|

, M :=
d∑

k=0

|λ|k|Mk|, (2.11)

where P ′ = ∂P
∂λ and the absolute values are taken component wise.
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2.4.2 Backward error

The backward error measures the size of perturbation of the eigenvalue equation, such that an
approximate eigenpair (λ̃, x̃) of P (λ)x = 0 is the exact solution of the perturbed equation

(P + ∆P )(λ̃)x̃ = 0.

The backward error is a mere theoretical tool. In practical calculations the component wise
backward error (see [5]) is preferred. The explicit expression of the component wise backward
error bc of an approximate eigenpair (λ̃, x̃) with respect to the eigenvalue polynomial P is given
by

bc(P, λ̃, x̃) := max
j

|rj |(
P̃ |x̃|

)
j

, P̃ :=
d∑

k=0

|λ̃|k|Mk|, r = P (λ̃)x̃, (2.12)

where the modulus is taken component wise.

2.4.3 Forward error estimate

The forward error ef is the absolute difference of exact solution and numerical one. In other
words, the forward error is the precision of numerical solution. Practically the exact solution is
unknown and an upper bound of forward error is desired. The relation

forward error ≤ backward error · condition number (2.13)

is well known, e.g. [5]. With respect to computational cost the best approximation is the
component wise version

ef(P, λ̃, x̃, ỹ) ≤ bc(P, λ̃, x̃) · κc(P, λ̃, x̃, ỹ) (2.14)

with the approximate eigentriple (λ̃, x̃, ỹ).

Remark 2.39. With a complex symmetric eigenvalue polynomial P the left eigenvector ỹ = x̃
can be computed easily.

Now, the Jacobi-Davidson Algorithm 6 can be extended by the following rules. If the residual
r is below the tolerance, equation (2.14) is evaluated. If the forward error estimate is below the
tolerance, the stopping criterion is fulfilled. Otherwise the search space iteration is continued.



Chapter 3

Anomalous transport model

In this chapter the physical model of the anomalous transport throughout the edge layer of the
Tokamak is introduced and a mathematical description is presented. It is a simplified, but still a
so called self consistent transport model derived by Tokar, Kelly, Loozen and Reiser [23, 27, 38].
In the following we sum up the basic ideas and equations of this transport model.

3.1 Linearized transport equations

The fundamental principles such as conservation of particles, momentum and energy yield the
basic equations, which are the continuity equation, the momentum equation, the zero current
divergence, Faraday’s, Ampere’s and Ohm’s law. These equations are very complex and several
simplifications are prepared.

3.1.1 Time scale

In a first step, we compare the time scale of the plasma parameter with the perturbation of
micro instabilities. Macroscopically, the plasma is close to the equilibrium and the changes are
slow in comparison to the fast varying micro instabilities of the plasma parameters. Hence, each
quantity f̂ is assumed to be composed of the temporal nearly constant macroscopic part f0 and
the temporally fast varying microscopic part f̃ . We get the decomposition

f̂ = f0 + f̃ ,

where f̃ is called perturbation term. The model used in this work concentrates on the microscopic
part and therefore the macroscopic one is assumed to be constant in time.

3.1.2 Linear approximation

The perturbations of the density ñ, the electric potential φ̃, the electric current j̃ and the
magnetic field B̃ along the magnetic field lines within the magnetic flux surface are assumed to
be a Fourier series of plain waves,

f̃(l, χ, t) =
∑

kχ,kη ,eω fkχ,kη(l, χ) exp(ikχχ+ ikηη − iω̃t), (3.1)

where l is the length along the magnetic field line, kχ is the wave number in direction of eχ (cf.
Figure 1.4 on page 12), kη the wave number in the direction of eη (cf. Figure 1.4), k‖ the wave
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Figure 3.1: The picture 1.2 with the three directions of perturbations illustrated by a sine curve.

number in the direction parallel to the magnetic field line, ω̃ is the complex frequency and t the
time. The imaginary part of ω̃ expresses the temporal amplitude of the perturbation wave f̃ .
The special form of f̃ neglects the perturbation waves parallel to the magnetic field line, because
those wave components do not produce transport perpendicular to the magnetic flux surfaces.

In this work the radial direction is averaged and the Fourier series simplifies to

f̃(l, t) =
∑

kχ,kη ,eω fkχ,kη(l) exp(ikχχ+ ikηη − iω̃t).

The movement along the magnetic field line l projected onto the poloidal plane corresponds to
a movement along the poloidal angle θ and the perturbation synthesis reads

f̃(θ, t) =
∑

kχ,kη ,eω fkχ,kη(θ) exp(ikχχ+ ikηη − iω̃t), (3.2)

where the length element ∂lθ affects the parallel derivative

df̃

dl
=
df̃

dθ
∂lθ.

In particular for a Tokamak with circular cross section the length element is given by

∂lθ =
1
qR0

where q denotes the safety factor and R0 the major radius of the edge layer.

The time dependent part of the wave equation is exp(−iω̃t). Hence the frequency ω̃ with =(ω̃)
the largest imaginary part grows the fastest in time and will dominate all others. Thus, we
concentrate solely on the most dominant frequency and assume

f̃(θ, t) = f(θ) exp(ikχχ+ ikηη − iω̃t), (3.3)

where =(ω̃) is maximal.
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3.1.3 Basic model equations

Here, we state the physical equations of the well established anomalous transport model in
the version of Dirk Reiser [27]. This version uses an abstract formulation of the occurring
operators, which offers the possibility to apply the equations on different magnetic geometries of
the Tokamak device. Once the magnetic geometry is chosen, an appropriate coordinate system
can be defined and the explicit formulation of the operators can be calculated and applied.

For better readability the vector valued terms are printed bold and the abbreviation

K(f) :=
(
∇× B

B2

)
· ∇f (3.4)

is used for the curvature.

The perturbations are assumed to consist solely of the mode of strongest growth rate in time
(3.3). In order to utilize the advantage of the approach

f̂(θ, t) = f0(θ) + f̃(θ, t) = f0(θ) + f(θ) exp(ikχχ+ ikηη − iω̃t)

the physical equations are linearized, i.e., the second order perturbation terms are neglected.

Within the linearized equations it is possible to factor out the exponential function after the
operators are applied.

In the following the linearized version of the fundamental equations is given. Here, n denotes
the density of the charged particles, v are drift velocities specified by the index, j is the electric
current, φ is the electric potential, ps is the pressure of the electrons (s = e) or the ions (s = i),
ms is the mass of the electrons (s = e) or the ions (s = i), A is the vector potential and Te is the
electron temperature. For the ease of presentation the index 0 of the unperturbed quantities is
omitted.

Particle continuity

∂ñ

∂t
= −ṽE ·∇n− ṽE ·∇ñ− nK(φ̃) +

1
e
K(p̃i) +

B

e
∇‖

j̃‖

B
(3.5)

Momentum balance

j⊥ = j∗ + jp ≈
B ×∇p

B2
+
min

B

B

B
× d

dt
(vE + v∗i) (3.6)

Faraday’s law and Ampere’s law
Assuming that the perturbed magnetic vector potential Ã has only a component Ã‖ parallel to
the magnetic field one obtains

Ẽ‖ = −
∂Ã‖

∂t
−∇‖φ̃ (3.7)

∇2
⊥Ã‖ = −µ0j̃‖. (3.8)

Ohm’s law
By neglecting the temperature perturbations and the expression for Ẽ‖ above, Ohm’s law can
be written as

∂Ã‖

∂t
+
me

ne2
dj̃‖

dt
=
Te

ne
∇‖(n+ ñ) +

1
e
∇‖Te −∇‖φ̃− η‖j̃‖ (3.9)
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Zero current divergence
The quasi neutrality condition ∇ · j = 0 gives

B∇‖
j̃‖

B
= −K(p̃i + p̃e) +

min

B2

d

dt

(
∇2
⊥φ̃+

∇2
⊥p̃i

en

)
(3.10)

where
d

dt
=

∂

∂t
+ ṽE ·∇⊥ =

∂

∂t
+

B · (∇⊥φ̃×∇⊥)
B2

∇‖ =
B ·∇
B

−
B · (∇⊥Ã‖ ×∇⊥)

B2

∇⊥ = ∇−∇‖, ∇2
⊥ = ∇ ·∇⊥.

3.1.4 Potential perturbation eigenvalue problem

Due to the fact that the problem is analyzed only in one dimension, namely the poloidal direction,
the radial derivatives are neglected. The expressions of the operators are transformed into a
coordinate system aligned to the magnetic field line and the Fourier mode (3.3) is inserted into
the perturbation terms (ñ, φ̃, j̃, p̃ and Ã‖) in the set of equations

∂ñ

∂t
= −ṽE ·∇n− ṽE ·∇ñ− nK(φ̃) +

1
e
K(p̃e) +

B

e
∇‖

j̃‖

B

mi

eB

d

dt

(
∇2
⊥φ̃+

∇2
⊥p̃i

en

)
= B∇‖

j̃‖

B
+K(p̃i + p̃e)

∂Ã‖

∂t
+
me

ne2
dj̃‖

dt
=
Te

ne
∇‖(n+ ñ)−∇‖φ̃− η‖j̃‖ +

1
e
∇‖Te

∇2
⊥Ã‖ = −µ0j̃‖.

(3.11)

This leads to the following Mathieu (cf. (3.14)) like eigenvalue equation for the perturbed electric
potential envelope φ

∂2φ

∂θ2
=
ω(β̂ + zγ3µ̂K

2
⊥)− (1 + λ̂)β̂K⊥ + izγ3ĈK

2
⊥

γ3
1z
(
K⊥ − ω

(
1 + zγ3(1 + α̂)K2

⊥
)) (

(1 + α̂)
γ2

γ3
ωB(1− zγ3ωK⊥) + zω(ω + α̂K⊥)

)
φ,

(3.12)
where the normalized units are introduced as K⊥ = kηρi, ω = ω̃Ln

cs
. The metric coefficients γ1,

γ2 and γ3 and the physical quantities are explained subsequently.

The electrons and ions are assumed to have equal densities as well as equal temperature. Thus
the ratio is

α̂ :=
Ti

Te
= 1.

T and n are used without the subscript in the following. Additionally, the e-folding length of
the neutrals and of the electron temperature is assumed to be equal and the ratio is

λ̂ :=
Ln

LTe

= 1.
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Further abbreviations are

ε̂ =
(
q0R0

Ln

)2

, β̂ = ε̂β, ωB =
2Ln

R0
, µ̂ = ε̂µ, Ĉ = µ̂

Ln

cs

νe

1.96
Zeff = ε̂

√
µ
Ln

λe
,

where the mass ratio of electrons and ions is

µ =
me

mi
,

the ratio of the pressure to the magnetic pressure is

β = µ0
nT

B2
0

,

the sound velocity and larmor radius of ions (s = i) and electrons (s = e) is

cs =
√

T

ms
, ρs =

csms

eB0
,

the friction coefficient of the electrons is

νe =
e4neΛc

3(2π)3/2ε20
√
meT 3/2

and the Coulomb integral is

Λc = 30.3− 1.15 log10

(
nm3

)
+ 3.45 log10

(
eT eV−1

)
.

The physical meaning of the quantities that are not explained here is listed in Table 3.1 and
Table 3.2.

The factor z takes into account the magnetic shear

ŝ =
d ln(q)
d ln(χ)

.

If the wave vector kη is large enough, the radial wave vector kχ is assumed to be equal to
kη (strong turbulence limit). Otherwise kχ is bounded from below due to Landau damping of
perturbations with the radial wave length being too large [43]. Additionally this length has to
be smaller than Ln. These aspects are considered by the factor z = 2γ, where

γ =
k2

χ + k2
η

2k2
η

= max

{
1,

1
2

+ ζ

(
π

K⊥
max

{
ŝLn

q0R0
,
ρi

Ln

})2
}
, ζ = 2.

3.1.4.1 The metric coefficients

The determination of the metric coefficients γ1, γ2 and γ3 requires to consider the variation of
the length element on the magnetic flux surfaces.

The coordinates on the magnetic flux surface can be written as

x = R cos(ϕ), y = Z, z = −R sin(ϕ),

where the coordinates in the poloidal plane are described by

R = R0 + r cos(θ) +Dr cos(2θ)
Z = rE sin(θ)− rED sin(2θ),
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Figure 3.2: The metric coefficients with (a) TEXTOR parameter R0 = 175 cm, r0 = 46 cm, E = 1,
D = 0, B = 2.25 T, q = 3.5 and (b) MAST parameter R0 = 80 cm, r0 = 60 cm, E = 2, D = 0.22,
B = 0.47 T, q = 5.

with the major radius R0, the minor radius r, the elongation E and the triangulation D.

The magnetic field in the Tokamak is a superposition of the toroidal magnetic field Bϕ and the
poloidal magnetic field Bθ. In the contravariant basis they are

Bθ =
B0r

qJ
, Bϕ =

B0R0

R2
.

The total field strength is

B =
√
gθθBθBθ + gϕϕBϕBϕ,

where the covariant metric tensor reads

gθθ =
(
∂R

∂θ

)2

+
(
∂Z

∂θ

)2

, gϕϕ = R2

and an abbreviation for the determinant of the Jacobian is introduced

J := R det
((

∂
∂r
∂
∂θ

)
(R,Z)

)
= rRE

(
1− 2D2 −D cos(3θ)

)
.

It is used to calculate the inverse of the Jacobian matrix by Cramer’s rule which is needed to
calculate the contravariant metric tensor

gθθ =
(
∂θ

∂R

)2

+
(
∂θ

∂Z

)2

where the derivatives are

∂θ

∂R
= − sin(θ)−D sin(2θ)

r
(
1− 2D2 −D cos(3θ)

) , ∂θ

∂Z
=

cos(θ) +D cos(2θ)
rE
(
1− 2D2 −D cos(3θ)

) .
A consideration [27] of the underlying physical formulas yields the metric coefficients

γ1 =
Bθ

B
qR0, γ2 =

1
JB4

(
∂B2

∂θ
Br −

∂B2

∂r

B2

Bθ

)
B0R0r

2q
, γ3 =

(
1
R2

+ gθθ

(
Bϕ

Bθ

)2
)
r2

q2

(3.13)
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The radial magnetic field Br is small and thus can be neglected:

γ2 ≈
−1

JB2Bθ

∂B2

∂r

B0R0r

2q
=
B0R0

JBθq

r

R

(
∂R

∂r

)
− BθB0R0

JB2q

[(
∂R

∂θ

)2

+
(
∂Z

∂θ

)2
]
.

In γ3 the factor 1/R2 is much smaller than the other term and omitting it simplifies γ3 to

γ3 ≈ gθθ

(
Bϕ

Bθ

)2 r2

q2
=
(
E2
(
sin(θ)−D sin(2θ)

)2 +
(
cos(θ) +D cos(2θ)

)2)R2
0

R2
.

For E = 1, D = 0 and r
R0
→ 0 (high aspect ratio limit) the coefficients simplify to γ1 = 1 = γ3

and γ2 = cos θ, which are the values used in [23, 38]. Figure 3.2 displays the profile of the metric
coefficients for the Tokamak TEXTOR and MAST.

3.1.4.2 Former approach

In an earlier work, Tokar et al. [23, 38] simplified the eigenvalue equation (3.12) until they could
estimate the real and the imaginary part of the eigenvalue ω by the Mathieu equation

∂2φ

∂ϑ2
+
(
a− 2q cos(2ϑ)

)
φ = 0, a, q ∈ R (3.14)

and the eigenfunction φ was determined by Loozen with a shooting method. Unfortunately
this requires to average all quantities like the plasma parameters temperature, density and the
geometric coefficients except for γ2 = cos(θ).

Now, the main purpose of this work is to solve the eigenvalue equation (3.12) with the possibility,
that any quantity depends on the poloidal angle θ also though the elongation and triangulation
of magnetic surfaces expressed through the metric coefficients.

3.1.5 Eigenvalue polynomial

In order to transform the eigenvalue equation (3.12) into a mere eigenvalue polynomial it needs
to be multiplied by the denominator containing the eigenvalue ω. To do this, the following
abbreviations

c1 = β̂ + zγ3µ̂K
2
⊥ c2 = −(1 + λ̂)β̂K⊥ c3 = zγ3ĈK

2
⊥

c4 = (1 + α̂)
γ2

γ3
ωB c5 = −z(1 + α̂)γ2ωBK⊥ c6 = zα̂K⊥

c7 = z c8 = −zγ3
1K⊥ c9 = zγ3

1

(
1 + z(1 + α̂)γ3K

2
⊥
) (3.15)

are introduced.

Remark 3.1. Although it is not explicitly pointed out, many values cj depend on the angle θ.
Primary it is the temperature T and the density n. Secondary, Λc, λe, β, Ln, γ depend on T or
n and therefore on θ, as well. The dependencies are listed in Table 3.2. Thus, cj = cj(θ) holds
in general. Further, cj(θ) are real valued functions.

Applying the abbreviations, the eigenvalue problem reads

0 =
∂2φ

∂θ2
+

(
ωc1 + c2 + ic3

)
(c8 + ωc9)

(
c4 + ω(c5 + c6) + ω2c7

)
φ. (3.16)



42 Anomalous transport model

It is complex symmetric as long as the derivative part is discretized symmetrically, which is
true on equidistant spaced grid. Finally, equation (3.16) is multiplied by its denominator, is
expanded and sorted by powers of the eigenvalue ω:

0 =

[
c1c7ω

3 +
(
c1(c5 + c6) + (c2 + ic3)c7

)
ω2

+
(
c9
∂2φ

∂θ2
+ c1c4 + c2(c5 + c6) + ic3(c5 + c6)

)
ω +

(
c8
∂2φ

∂θ2
+ c4(c2 + ic3)

)]
φ

(3.17)

It is no longer complex symmetric, but the left eigenvector

φleft = Diag(c8 + ωc9)−1φ (3.18)

can be calculated easily when the eigenpair (ω, φ) is known.

Remark 3.2. The knowledge of the left eigenvector yields the possibility to calculate the con-
dition number (2.11), which together with the backward error (2.12) allows to estimate the
forward error of the calculated eigenvalue.

In the mathematical theory, the eigenvalue problems have many solutions (ω, φ), however, con-
sideration of the underlying physical problem points out eigenpairs with a 2π-periodic and
smooth eigenfunction φ and the eigenvalue with maximal growth rate =(ω) > 0 dominates (3.2)
in time (see (3.3)).

Definition 3.3. Let (ω, φ) be an eigenpair of (3.17), then (ω, cφ) solves the equation for any
c ∈ C \ {0}. Therefore the normalization

1
2π

∫ 2π

0
φ∗(θ)φ(θ)

dσ

dθ
(θ) dθ = 1

is denoted as the particular eigenfunction, further on.

Remark 3.4. In (3.21), this arbitrary choice of normalization will be adjusted by a calibration
factor φ0.

Definition 3.5. If φ(0) 6= 0 the complex phase is normalized by the demand

φ(0) ∈ R.

Remark 3.6. The complex phase does only affect the plots of eigenfunctions, because the
physical formulas that are introduced in the next section use the intensity |φ|2.

3.2 Anomalous particle flux density

As long as the density perturbation ñ is in phase with the electric field perturbation φ̃ there is
neither a net flux of particles nor of energy. Moreover the relation

ñ = ιφ̃

holds, with the constant of proportionality ι beeing real. The linear connection is the reason,
why only the electric field perturbation was considered before.

The proportionality within the anomalous transport model introduced above is

ι =
K⊥ − 2K2

⊥ωγ

ω(1 + 2K2
⊥γ)

. (3.19)
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However, when the perturbation gets out of phase, ι becomes complex and in turn ω becomes
complex, too.

The anomalous particle flux from [43] is

Γ⊥ = ñṽ∗e + ñ∗ṽe =
Tn

eB

∑
kη

kη

[
ñ
(
−iφ̃

)∗
+ ñ∗

(
−iφ̃

)]
= i

Tn

eBρi

∑
K⊥

K⊥

(
ñφ∗ − ñ∗φ̃

)
, (3.20)

where ṽe is the perpendicular electron perturbation velocity. The anomalous particle flux Γ⊥ is
zero if ñ and ṽe are in phase.

A short calculation yields

<(ι) =
<(ω)− 2K⊥|ω|2γ

|ω|2
K⊥

1 + 2K2
⊥γ

=(ι) = −=(ω)
|ω|2

K⊥
1 + 2K2

⊥γ
.

This allows to eliminate the density perturbation:

Γ = −2
Tn

eBρi

∑
K⊥

K⊥=(ι)|φ̃|2 = 2
Tn

eBρi

∑
K⊥

=(ω)
|ω|2

K2
⊥

1 + 2K2
⊥γ
|φ̃|2.

In [43], Weiland compares the exponential growth of the perturbation wave (e.g. φ̃, ñ) with the
initial linear causer (e.g. ∇φ0, ∇n0). Close to the level where the perturbation reaches a magni-
tude comparable to the initial causer, the perturbation wave cancels its causing and saturates.
Within Weilands mixing-length theory the amplitude of the electric potential perturbation is
estimated and here taken into account by the substitution

φ̃← φ0

kχρi

=(ω̃)
kηcs

φ̃ = φ0
ρi

Ln

=(ω)
K2
⊥
√
γ
φ̃.

The factor φ0 ≈ 1 is a calibration parameter that compensates the normalization in Definition
3.3. It is obtained by a comparison with experimental data, which is described in the next
section.

Finally, the anomalous particle flux is

Γ⊥ = Γ1(n, T )φ2
0, (3.21)

where

Γ1(n, T ) = 2
Tnρi

eBL2
n

∑
K⊥

=(ω)3

K2
⊥(1 + 2K2

⊥γ)γ
|φ̃|2

|ω|2
, [Γ1] = m−2s−1. (3.22)

Remark 3.7. Equation (3.22) reveals the particle flux Γ⊥ to be related to the intensity of
the electric potential perturbation envelope amplitude φ(θ). Therefore the complex phase of
the eigenfunction does not affect the anomalous particle flux. Tokamak conditions, which are
symmetric to the mid plane, lead to a particle flux with distinguished points at the LFS and
the HFS, e.g. like the zeroth even Mathieu function (ce0). Hence, the desired eigenfunction is
expected to passes such a feature.
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3.3 Determination of plasma parameters

In this section we discuss the balance of the energy in the edge layer due to the inflow of heating
power from the plasma core and due to losses from the anomalous particle flux Γ⊥. The heat is
conducted mainly parallel to the magnetic field lines and, hence, the deformation of the magnetic
geometry is subordinate except for the profile g of the heat flow from the core.

In the Tokamak the heat balance in the edge layer due to the heating power from the plasma
core and the losses through LCMS is described by the non-linear heat balance equation

δedge

q2R2
0

∂

∂θ

(
−κ‖

(
n(θ), T (θ)

)∂T (θ)
∂θ

)
= g(θ)qcore − qloss

(
T (θ), θ

)
. (3.23)

The right hand side contains the temporal change of energy, on the one hand there is the heating
power from the plasma core qcore with the poloidal distribution g and on the other hand there
are the losses qloss due to charged particles that leave the LCMS and the ionization of neutrals
that penetrate into the plasma. The heat flow distribution g concerns the Shafranov shift and
[37] obtains the rough approximation

g(θ) = 1 + ∆1 cos(θ)

in case of a circular cross section, where ∆1 ≈ 0.5 expresses the poloidal varying heat gradient,
due to the Shafranov shift. The heat flux is largest at the LFS and smallest at the HFS.

The essential part on the left side is the electron parallel heat conductivity

κ‖ = 1.94 · 1021 (eT )2.5

ΛcZeff

that depends on the temperature T and causes the heat balance equation to be non-linear in T .
The width δedge of the edge layer depends on the penetration depth Ln of the neutral particles,
thus

δedge = Ln

is assumed.

The intensity of the energy loss qloss is composed at the one hand by the charged particles leaving
the plasma and taking their kinetic energy (temperature) out (3Γ⊥T ) and on the other hand by
the required energy to ionize the neutral particles (EiJ), which penetrate into the plasma

qloss = 3TΓ⊥ + EiJ.

The total energy Ei lost by exciting and ionizing each neutral particle, that penetrates into the
plasma, is approximated [15] as

Ei =
[
30 eV − 16.4 eV · exp

(
−5 · 1019

n

)]
exp

[
5.45 eV
eT

exp
(

n0.26

1.72 · 105

)]
, (3.24)

where n is measured in 1020 m−3. Ei ≈ 30 eV holds for temperatures above 30 eV and it rises
exponentially when the temperature approaches zero.

The particles that leave the plasma get neutralized at the wall and reflect back into the plasma
by a recycling probability Rrec = 0.9. Additional to the reflected particles, a flow Φgas of fusion
fuel is puffed into the plasma at a position θg and a width δg with an angular distribution

f(θ) = exp
(
−(θ − θg)2

δ2g

)
.
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So the total influx of neutrals is

J = Γ⊥Rrec + Φgasf(θ).

The global particle balance in the steady state∫ 2π

0
Γ⊥(θ)

dσ

dθ
(θ) dθ =

∫ 2π

0
J(θ)

dσ

dθ
(θ) dθ (3.25)

yields the relation

Φgas = (1−Rrec)

∫ 2π

0 Γ1(n, T ; θ)dσ
dθ (θ) dθ∫ 2π

0 f(θ)dσ
dθ (θ) dθ

φ2
0.

In state of global heat balance, the input heating power and the losses are equal, thus

2πqcore =
∫ 2π

0
qcore

dσ

dθ
dθ =

∫ 2π

0
qloss

dσ

dθ
dθ =

∫ 2π

0
(3TΓ⊥+EiJ)

dσ

dθ
dθ = φ2

0

∫ 2π

0
(3T +Ei)Γ1

dσ

dθ
dθ

holds.

The state of reference is one with a low puffing, i.e., small Φgas, and an experimentally known
poloidal nearly homogeneous profile (Texp, nexp). This leads to the calibration parameters

φ2
0 =

2πqcore

(3Texp + Ei)
∫ 2π

0 Γ1(nexp, Texp)dσ
dθ (θ) dθ

, [φ0] = 1, (3.26)

and
Φexp =

2π(1−Rrec)qcore
(3Texp + Ei)

∫ 2π

0 f(θ)dσ
dθ (θ) dθ

, [Φexp] =
1

m2s
. (3.27)

Methods to solve the heat balance equation (3.23) are explained in the numerical study in
section 6.1 on page 87.

physical background symbol TEXTOR value MAST value
safety factor q0 3.5 5
major radius of Tokamak R0 1.75 m 0.80 m
minor radius of Tokamak r0 0.46 m 0.60 m
atomic number of nuclei in fusion
fuel

Ai 2 (deuterium) 2

density of particles n 4.5 · 1019 m−3 2 · 1019 m−3

temperature T 40 eV 50 eV
magnetic field strength B0 2.25 T 0.47 T
heating power from plasma core qcore 3.13 · 1023 eV m−2 s−1 2.13 · 1023 eV m−2 s−1

recycling coefficient 1 ≥ Rrec 0.9 0.9

Table 3.1: The device dependent physical values used in the anomalous transport equations.



46 Anomalous transport model

physical background symbol value and unit

mass ratio of electron and ion µ = me
mi

= 5.45·10−4

Ai

mass of electron me = 9.10938188 · 10−31 kg
mass of deuterium nuclei mi = 2 · 1.67262158 · 10−27 kg
Coulomb logarithm Zeff = 1.5
Coulomb integral Λc = 30.3− 1.15 log10

(
nm3

)
+ 3.45 log10

(
eT eV−1

)
mean free path length λe = 2.88 · 1017eV−2 m−2 · e2T 2

nΛcZeff
, [λe] = m

ratio of plasma and magnetic pres-
sure

β = µ0
nT
B2 , [β] = 1

cross section of charge exchange
and ionization

σ∗ = 10−18 m2 exp
(
−6.8 J C

eT

)
, [σ∗] = m2

penetration depth of neutral parti-
cles

Ln = 2
σ∗n

, [Ln] = m

ratio of radial k2
χ and azimuthal k2

η

wave numbers
γ = k2

χ+k2
η

2k2
η

= max
{

1, 1
2 + ζ

(
πLn

qR0K⊥

)2
}

, ζ = 2

larmor frequency ωc = eB
mi

, [ωc] = s−1

ion sound velocity cs =
√

T
mi

, [cs] = m s−1

larmor radius ρi = cs
ωc

, [ρi] = m
elementary charge e = 1.602176487 · 10−19 C
charge of ion ei = e

speed of light in vacuum c = 2.99792458 · 108 m s−1

Boltzmann constant kB = 1.3806504 · 10−23 J K−1

permeability of free space µ0 = 4π · 10−7 N A−2

permittivity of free space ε0 = 8.8541878176 · 10−12 Fm−1

Table 3.2: The physical values used in the anomalous transport equations.

1 T = 104 Gauss
1 eV = 1.602176462 · 10−12 erg
1 eV = 1.602176462 · 10−19 J
1 eV = 44.5 · 10−27 kWh
1 K = 8.61735 · 10−5 eV
1 eV = 1.16045 · 104 K
1 K = 1.38066 · 10−23 J
1 J = 7.24290 · 1022 K
1 J = 1 Ws
1 C = 2.99792458 · 109 cgs

Table 3.3: Constants of proportionality between certain units.



Chapter 4

Numerical treatment of the
anomalous transport eigenvalue
equation

This chapter concentrates on the numerical methods to efficiently solve the eigenvalue equation
(3.17) of the anomalous transport model. Additional to mathematicians, the target audience of
this work are physicists, that might not be that familiar with the numerical techniques. Therefore
we start with the spatial discretization of the derivatives and transform the continuously defined
eigenvalue equation into a matrix polynomial eigenvalue equation.

We solve the matrix polynomial eigenvalue equation with a well adopted Jacobi-Davidson
method and improve its efficiency by a multilevel approach that offers an initial search space
with a small angle to the desired eigenvector with low computational costs. We discuss how
the right Ritz pair can be chosen and how the correction equation can be solved efficiently to a
suitable accuracy.

4.1 Discretization

In order to solve the eigenvalue problem (3.17) numerically, the functions and the derivative
operations have to be approximated by discrete functions, i.e., on grids.

4.1.1 Grids

In the discrete space a function f : [a, b] → C on an interval I := [a, b] is represented by its
values fi = f(xi) in the grid points xi ∈ I, 0 ≤ i < N .

Definition 4.1. A grid

G
(
I = [a, b], N

)
:= (xi)i=0,...,N−1, a ≤ xi < xj ≤ b ∀ 0 ≤ i < j ≤ N − 1

is a strictly monotonically sequence of N ∈ N increasing grid points xi ∈ I. For some operations,
it is helpful to arrange the grid points into a vector ~x, such that (~x)i = xi.

On an equidistant grid

Gu
(
[a, b], N

)
:= (xi = a+ ih)i=0,...,N−1, h :=

b− a
N − 1
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the distance of two adjacent grid points xi, xi+1 is a fixed mesh size h = xi+1 − xi = b−a
N−1 .

A grid is of length N ∈ N is called 2π-periodic if xj = xj+N mod 2π. Further, G(N) denotes a
2π-periodic grid and Gu(N) is additionally equidistantly spaced.

Definition 4.2. A grid generating function

g(x) : Gu
(
[a, b], N

)
→ G2

(
[a, b], N

)
,

maps each grid point xi ∈ Gu onto a grid point g(xi) = zi ∈ G2. g is strictly monotone and the
derivatives are continuous.

Remark 4.3. When a grid is defined by a grid generating function, equivalent grids with a
different number of grid points are available.

Definition 4.4. A function f evaluated at a vector ~θ = (θ1, θ2, . . . , θN−1, θN )T defines the vector

f(~θ) :=


f(θ1)
f(θ2)

...
f(θN−1)
f(θN )


of function values.

The operator Diag places the elements of a vector ~f onto the diagonal of a matrix:

Diag(~f) :=



f1

f2

f2

. . .
fN−1

fN


.

Remark 4.5. The product of two functions f(θ) · g(θ) can be written in matrix operations as
follows

Diag
(
(f · g)(~θ)

)
= Diag

(
f(~θ)

)
·Diag

(
g(~θ)

)
4.2 Spatial discretization

The eigenvalue equation (3.17) of the anomalous transport model contains a second derivative
term. The heat-balance equation (3.23) to determine the plasma parameters includes the first
and the second derivatives. In discrete space these derivatives have to be approximated by
a numerical differentiation technique, because the values of the underlying functions are only
available in grid points. In order to write the eigenvalue equation in form of a matrix polynomial
eigenvalue problem, it is necessary to write the derivatives as multiplication with a suitable
matrix, i.e.,

∂kf

∂θk
(~θ) ≈ Dkf(~θ), k ∈ {1, 2}.

There are several well known approximations like finite differences or the pseudo spectral meth-
ods. The underlying idea of both methods is as follows [39]. A set of functions (ψj)j=0,...,d,
orthonormal in the sense

d∑
i=0

ψH
j (xi)ψk(xi) = 〈ψj , ψk〉 = δj,k
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is chosen, where δj,k denotes the Kronecker delta, i.e.,

δj,k =

{
0 if j 6= k

1 if j = k
.

Then the function f is expanded in terms of the generating system Ψ := {ψj , j = 0, . . . , d}

f(x) =
d∑

j=0

〈ψj , f〉ψj(x) + f⊥(x), f⊥ ⊥ span {ψj | j = 0, . . . , d} .

The residual f⊥ is zero if Ψ is a basis of our discrete space RN which requires d = N − 1. In
case that our function f has complex values, we remember C = R + iR and we can apply the
derivative process on real and imaginary part separately.

Now the derivative of f is taken by the derivative of the ψj :

∂kf

∂θk
(x) =

d∑
j=0

〈ψj , f〉
∂kψj

∂θk
(x) +

∂kf⊥
∂θk

(x)

The finite differences apply the interpolation through polynomials up to the degree d with the
support restricted to the d+1 points which are adjacent the point xc of interest. The derivative of
this polynomial approximates the derivative of the interpolated function. Thus, finite differences
concern the local behavior of the function values in adjacent grid points.

In contrast to the finite differences the pseudo spectral methods work globally. For 2π-periodic
functions a set ψj(θ) = exp(ijθ) up to some frequency is appropriate. In discrete space the
frequency is limited by the so called sampling theorem. One can restrict to the sine or the cosine
function as well, if the underlying function is symmetric. For non-periodic applications there
are different bases [39] like the sinc function or the Tschebychev polynomials. For the periodic
boundary conditions in the Tokamak application, the complex exponential function is suited
best.

4.2.1 Finite difference stencil by polynomial interpolation

In this section the approximation of the derivative at a grid point xc by local polynomial inter-
polation of degree d ∈ 2N is deduced. This technique uses d+ 1 adjacent grid points. First the
formula is deduced and afterward the error bounds are analyzed.

Let N ∈ N and f : [x1, xN ]→ C be an analytic function. At the grid points

x1 < x2 < . . . < xN−1 < xN

the values
fi := f(xi)

are known. One is interested in an approximation of the first and second derivative in an interior
grid point xc. The methods derived here will be applied to periodic functions later and therefore
the assumption to have grid points at both sides of xc is fully justified.

In the case of a periodic boundary condition a polynomial interpolation of degree d = N − 1 is
not sufficient. Thus the interpolation is restricted to a local subset of grid points, namely taking
b ∈ N points to the left and the right of xc. Then the discrete support of the interpolating
polynomial is

Sc := {xj | j ∈ Ic}, Ic := {c− b, . . . , c, . . . , c+ b} .
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Now, a basis of the polynomial space on Ic is needed. To avoid any restriction on the choice of
grid points, a basis of Lagrangian polynomials

Li,c(x) :=
c+b∏

j=c−b
j 6=i

x− xj

xi − xj
, i ∈ Ic,

the “fundamental polynomials for point wise interpolation” [7], is chosen.

The feature Li,c(xl) = δi,l, i, l ∈ Ic makes the interpolation easy:

pc(x) =
c+b∑

i=c−b

fiLi,c(x).

For the derivatives holds

p′c(x) =
c+b∑

i=c−b

fiL
′
i,c(x) and p′′c (x) =

c+b∑
i=c−b

fiL
′′
i,c(x)

and the approximation is f ′(xc) ≈ p′c(xc) and f ′′(xc) ≈ p′′c (xc).

With the product rule one obtains

L′i,c(x) :=
d

dx
Li,c(x) =

c+b∑
k=c−b

k 6=i


1

xi − xk

b+c∏
j=c−b

j 6=i
j 6=k

x− xj

xi − xj

 (4.1)

and

L′′i,c(x) :=
d2

dx2
Li,c(x) =

b+c∑
k=c−b

k 6=i

1
xi − xk


c+b∑

l=c−b
l 6=i
l 6=k

1
xi − xl


c+b∏

j=c−b
j 6=i
j 6=k
j 6=l

x− xj

xi − xj




. (4.2)

At grid points xq, q ∈ I, the derivative of the Lagrangian polynomial simplifies to

L′i,c(xq) =



c+b∑
k=c−b

k 6=i

1
xi − xk

, q = i

1
xi − xq

c+b∏
j=c−b

j 6=i
j 6=q

xq − xj

xi − xj
, q 6= i

(4.3)
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and

L′′i,c(xq) =



c+b∑
k=c−b

k 6=i

1
xi − xk


c+b∑

l=c−b
l 6=i
l 6=k

1
xi − xl

 , q = i

2
xi − xq


c+b∑

l=c−b
l 6=i
l 6=q

1
xi − xl


c+b∏

j=c−b
j 6=i
j 6=q
j 6=l

xq − xj

xi − xj




, q 6= i

(4.4)

The stencil of the finite differences is

[L(k)
c−b,c(xc), . . . , L(k)

c,c (xc), . . . , L
(k)
c+b,c(xc)],

where (k) denotes the kth derivative. On equidistant spaced grids, the stencil is independent of
the position c.

4.2.1.1 Finite difference operators with periodic boundary condition

Let f : [0, 2π[→ C be a 2π-periodic function and ~f := f(~θ) a discrete representation on a grid
G, θ0 < θ1 < . . . < θN = θ0 + 2π.

Sk,θc := [L(k)
c−b,c(θc), . . . , L(k)

c,c (θc), . . . , L
(k)
c+b,c(θc)]

is the stencil that approximates the kth derivative of f in θc. For a three point stencil

[Sk,θc
−1 , S

k,θc
0 , Sk,θc

1 ]

the matrix operation is

∂k

∂θk
f



θ0
θ1
θ2
...

θN−2

θN−1


≈



Sk,θ0
0 Sk,θ0

1 Sk,θ0
−1

Sk,θ1
−1 Sk,θ1

0 Sk,θ1
1

Sk,θ2
−1 Sk,θ2

0 Sk,θ2
1

. . . . . . . . .
S

k,θN−2

−1 S
k,θN−2

0 S
k,θN−2

1

S
k,θN−1

1 S
k,θN−1

−1 S
k,θN−1

0





f0

f1

f2
...

fN−2

fN−1


= Dk

~f

In general, the stencil is put onto a row with S0 on the diagonal. The elements outside the matrix
are shifted to the opposite side in the same row, due to the periodic boundary condition. Let
the stencil have 2p+1 entries. The resulting matrix is a band matrix of width p and additionally
the upper right and the lower left corner have non-zero entries to a width of p. This sparsity
pattern is entitled by the following definition.

Definition 4.6. A band matrix with the band width p and additionally non-zeros on the upper
right and the lower left corner to a width of p is called periodic band matrix of band width p.
The sparsity pattern is illustrated in Figure 4.1.

The matrix which approximates the derivative by the Lagrangian interpolation technique, as
defined above, has a periodic band width of p = b and it is sparse because of b� N .



52 Numerical treatment of the anomalous transport eigenvalue equation

Figure 4.1: A periodic 20 × 20 band matrix with a band width of p = 3. Each dot marks a non-zero
entry.

4.2.1.2 Approximation error

The polynomial interpolation technique to obtain the derivative cannot be exact in general.
Hence some estimate on the error is of interest, especially how the error reduces if the number
of grid points is increased. The following theorem is taken from [35].

Theorem 4.7. Let f : [x0, xd] → R be d times differentiable and let be p the interpolating
polynomial of degree d through (xi, fi), i = 0, . . . , d. For each x ∈ [x0, xd] there is a ξ = ξ(x) ∈
]x0, xd[ such that

f(x)− p(x) = (x− x0)(x− x1) . . . (x− xd)
f (d+1)(ξ)
(d+ 1)!

holds.

Definition 4.8. The order of the error

f(x)− p(x) = O
(
(xd − x0)d+1

)
is defined by the power d+ 1.

The following theorem is possibly not new, but it has not be found in the literature.

Theorem 4.9. Let xi := ih, h > 0, i = −b, . . . , b, b ∈ N be an equidistant grid of 2b + 1
supporting points with its center in x0 = 0. Let f be an analytic function and p, deg(p) = d := 2b,
the polynomial that interpolates f(xi) = p(xi), i = −b, . . . , b.

In the center x0 = 0 the accuracy of the derivative approximation is

p′(x0)− f ′(x0) ∈ O(hd)

p′′(x0)− f ′′(x0) ∈ O(hd).

Proof. Due to Theorem 4.7 it holds

p(x0)− f(x0) ∈ O(hd+1).

Each derivative looses one order and thus

p′(x0)− f ′(x0) ∈ O(hd)

p′′(x0)− f ′′(x0) ∈ O(hd−1)
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holds. However, the stencil of the second derivative is symmetric and though the error is
symmetric it holds

p′′(x0)− f ′′(x0) ∈ O(hd).

In the Appendix A on page 123 there is another variant of this proof by direct computation.

Theorem 4.10. Let G1 be an equidistant grid of N grid points. The values fj = f(zj) of the
analytic function f are known in zj ∈ G1 and its derivative is approximated by the Lagrangian
interpolation polynomial p of degree d = 2b in z0 ∈ G1. We define Gu := (jh)j=−b,...,b, h > 0.
Let be g : Gu → G1 the grid generating function with g(xj) = zj.
The accuracy of the approximation p(n) of f (n), n = 1, 2 from theorem 4.9 holds for non-
equidistant grid G1, too. However, the constant in the error term depends on the size of the
derivatives g(n)(x0), n = 1, . . . , d.

Proof. With the grid generating function g the values fi = f(zi), zi ∈ G1 can be written
fi = f(g(xi)), where xi ∈ Gu.

Now, Theorem 4.9 is applicable to f(g) and we derive from its proof

p(n)(0)− f (n)
(
g(0)

)
=

m∑
k=d

ckf
(k)
(
g(0)

)hk

k!
+O(hm+1), n ∈ {1, 2}

where

ck =
b∑

j=−b

jkL
(n)
j (0).

The inner derivatives of f (k)
(
g(0)

)
are factors within the error term.

Remark 4.11. Although the finite difference stencil can be calculated out of the Taylor formula
by solving a linear system, the Lagrangian interpolation technique offers the solution directly.
The proof of Theorem 4.9 points out that both methods are theoretical equal. Both methods
become numerically unstable if d is too large with respect to the floating point precision of the
data type double. If the knowledge of the derivative of a given vector is sufficient, the method
of divided differences [35] is more stable.

4.2.2 Spectral methods

In contrast to the finite difference technique, the pseudo spectral methods make use of the whole
domain for a global interpolation. “If one wants to solve an ODE or PDE to high accuracy on a
simple domain, and if the data defining the problem are smooth, then pseudo spectral methods
are usually the best tool. They can often achieve ten digits of accuracy where a finite difference
or finite element method would get two or three. At lower accuracies, they demand less computer
memory than the alternatives.” [39]. Due to numerical stability and the possibility to apply
the fast Fourier transformation (FFT), the pseudo spectral method is considered for equidistant
spaced grids in this thesis only.

The discrete inverse Fourier transformation yields coefficients αj ∈ C of a vector f(~θ) such that

f(θ) =



(N−1)/2∑
j=−(N−1)/2

αj exp (ijθ) , N odd

(N−2)/2∑
j=−(N−2)/2

αj exp (ijθ) +
1
2

(
exp

(
i
N

2
θ

)
+ exp

(
−i
N

2
θ

))
, N even
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holds in each grid point θ = (~θ)k. The two cases are necessary in order to take the highest
frequency symmetric at both sides. The derivative is

∂kf

∂θk
(θ) =



(N−1)/2∑
j=−(N−1)/2

αj (ij)k exp (ijθ) , N odd

(N−2)/2∑
j=−(N−2)/2

αj (ij)k exp (ijθ) +
1
2

(
i
N

2

)k (
exp

(
i
N

2
θ

)
+ (−1)k exp

(
−i
N

2
θ

))
, N even.

Definition 4.12. Let be V ∈ CN×l and FN = (exp(ijθk))k,j=0,...,N the matrix, that applies the
Fourier transform on each column of V . F−1

N denotes the inverse discrete Fourier transform.
The matrix notation is for the theoretical discussion. The implementation makes use of the
fast Fourier variant. The factors which are obtained when the complex exponential function
is derived are arranged within Ξ. We have to take care of the aliasing effect and choose the
representative with the smallest |j|:

Ξk := Diag

(
0, ik, (2i)k, (3i)k, . . . ,

(
N − 1

2
i
)k

,

(
−N − 1

2
i
)k

, . . . , (−2i)k, (−i)k

)
if N is odd and

Ξk := Diag

(
0, ik, . . . ,

((
N

2
− 1
)

i
)k

,

(
N

2
i
)k

+
(
−N

2
i
)k

,

(
−
(
N

2
− 1
)

i
)k

, . . . , (−i)k

)
if N is even.

Remark 4.13. If N is even and k is odd the
(

N
2 + 1

)
th diagonal element in Ξk is zero.

Remark 4.14. The computational cost to calculate the Fourier transform is in O(N log(N))
in case of the fast variant and in O(N2) with the matrix product.

The derivative for a given function f is calculated inO(N log(N)) as follows. The inverse discrete
Fourier transform yields the Fourier coefficient αj of the frequency j. They are weighted by Ξk

and transformed back by the discrete Fourier transform. This process can be written elegantly
as

∂kf

∂θk
(~θ) = FNΞkF−1

N
~f, ~f := f(~θ).

The matrices Dk := FNΞkF−1
N , k = 1, 2 can be calculated directly by an approach similar to

the Lagrangian interpolation. The periodic sinc function

sinc(x) =
h sin

(
πx
h

)
2π tan

(
x
2

)
is one in x = 0 mod 2π and zero in all the other grid points. In [39] it is derived in detail, that

sinc′(xj) =

{
0, j = 0 mod N
1
2(−1)j cot

(
jh
2

)
, j 6= 0 mod N

holds and the matrix of the first derivative is

D1 =



0 −1
2 cot

(
1h
2

)
−1

2 cot
(

1h
2

) . . . . . . 1
2 cot

(
2h
2

)
1
2 cot

(
2h
2

) . . . −1
2 cot

(
3h
2

)
−1

2 cot
(

3h
2

) . . .
...

...
. . . . . . 1

2 cot
(

1h
2

)
1
2 cot

(
1h
2

)
0


.
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The second derivative of the sinc function is

sinc′′(xj) =

−
π2

3h2 − 1
6 j = 0 mod N

− (−1)j

2 sin2( jh
2 ) j 6= 0 mod N

and the matrix reads

D2 =



. . .
...

. . . −1
2 csc2

(
2h
2

)
. . . 1

2 csc2
(

1h
2

)
− π2

3h2 − 1
6

1
2 csc2

(
1h
2

) . . .

−1
2 csc2

(
2h
2

) . . .
...

. . .


,

where csc(x) := 1
sin(x) .

In special cases, where f is known to be even or odd, the cosine or sine transformation takes
the role of the Fourier transformation. This reduces the cost of the calculation and conserves
the symmetry to highest accuracy.

4.2.3 Comparison of the polynomial interpolation with the pseudo spectral
method

Lagrange interpolation is a local method with an expense in O(Nd). The derivative matrices
are sparse if d� N holds and the approximation error of the first and the second derivative is
of the order (xb−x−b)d−1. It can be applied on non equidistant spaced grids, but the error may
increase on strongly irregular grids.

On the other hand the pseudo spectral method acts globally. Therefore the derivative matrices
are dense, causing an expense of O(N2) operations. However, at equidistant spaced grids, to
derive one given vector can be computed by the fast Fourier transformation (FFT) , which
reduces the derivative costs to O(N log(N)).

In [3] the Mathieu equation (3.14) is solved by the pseudo spectral method. A linear combination
of low frequencies

φ(ϑ) =
m∑

j=0

αj sin(jϑ) + βj cos(jϑ), αj , βj ∈ R

is applied to (3.14) and the coefficients αj , βj are determined. Due to a fast decay of the
weighting factors, higher frequencies can be truncated.

We will compare both methods in the sections of the eigenvalue solver and the heat balance
equation again.

4.3 Solving the cubic eigenvalue problem numerically

The previous section provides the basic numerical techniques to write the continuous eigenvalue
problem (3.17) in form of matrices. In compact form (cf. (3.16)) the continuous one looks like

P (ω) = a3(θ)ω3 + a2(θ)ω2 +
(
a1(θ) + b1(θ)

∂2

∂θ2

)
ω + a0(θ) + b0(θ)

∂2

∂θ2
. (4.5)
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The angular domain [0, 2π[ is discretized by a periodic grid ~θ of N ∈ N grid points. The terms
which depend on the angle θ are represented by diagonal matrices and the second derivative
is approximated by the matrix D2 from the previous section because of the periodic boundary
condition

P~θ
(ω) =

M3︷ ︸︸ ︷
Diag

(
a3(~θ)

)
ω3 +

M2︷ ︸︸ ︷
Diag

(
a2(~θ)

)
ω2 +

M1︷ ︸︸ ︷(
Diag

(
a1(~θ)

)
+ Diag

(
b1(~θ)

)
D2

)
ω

+
(

Diag
(
a0(~θ)

)
+ Diag

(
b0(~θ)

)
D2

)
︸ ︷︷ ︸

M0

.
(4.6)

P~θ
(ω) is a cubic matrix polynomial in CN×N .

The naive method to find the eigenpairs (ω, ~φ) such that

P~θ
(ω)~φ = 0

is to linearize (cf. (2.1)) the cubic matrix polynomial P~θ
and apply the QZ algorithm (cf.

section 2.2.2.1 on page 27) on the resulting generalized eigenvalue problem of the dimension 3N .

The calculation with the QZ algorithm and N = 1024 on a 2 GHz processor takes one hour.
This is too slow because we have to solve one eigenvalue equation for each wave number K⊥ and
the self consistent calculation in Chapter 6 requires to repeat it several times which requires to
solve a total number of thousands to a million eigenvalue equations. With the QZ algorithm
the self consistent simulation would take several years.

We are interested in a fast algorithm that calculates the one or two eigenpairs with the maximal
growth rate =(ω).

4.3.1 Jacobi-Davidson method

In Chapter 2, the Jacobi-Davidson method is introduced as a technique to find one or a few
eigenpairs by solving smaller eigenvalue problems on (small) subspaces. First we rewrite Algo-
rithm 6 on page 31 for the special structure of the eigenvalue equation (4.6). This is done in
Algorithm 7.

The derivative in the eigenvalue equation (3.17) operates on the column vectors of the search
space V . This allows to apply the fast Fourier transformation. In the case of the finite differences
a divided differences scheme can be applied in order to find the coefficients of the interpolating
polynomial and to take its derivative the cost is only O(N). The numerical stability of the di-
vided difference scheme is better for derivatives of higher order compared to the matrix obtained
by the Lagrangian interpolation method.

Beside the derivative matrices, all the other matrices are diagonal. Although the description of
Algorithm 7 is written with diagonal matrices, its implementation avoids the indexing process
of sparse matrices completely.

The stopping criteria is enhanced by a forward error estimate (cf. section 2.4 on page 33) because
a small residual is only a necessary condition but not sufficient in case of badly conditioned
eigenvalues (κ(P (ω))� 1). To keep the computational costs low, a much smaller residual r can
be demanded until the forward error estimate ef is calculated, i.e., εr < εf , where the appropriate
ratio

εf
εr
≈ κ(P (ω))

depends on the condition number, which can be approximated by the component wise condition
number (2.11).
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Algorithm 7 Jacobi-Davidson algorithm for anomalous transport eigenvalue equation (4.5)

Require: a grid ~θ of N ∈ N grid points.
Require: a k dimensional initial search space V = [v1, . . . , vk] ∈ CN×k, 1 ≤ k � N .
1: discretize D2 ← ∂2

∂θ2 if not the pseudo spectral method is applied.
2: discretize Aj = Diag

(
aj(~θ)

)
, j = 0, 1, 2, 3.

3: discretize Bj = Diag
(
bj(~θ)

)
, j = 0, 1.

4: P (ω) := A3ω
3 +A2ω

2 + (A1 +B1D2)ω +A0 +B0D2.
5: orthonormalize V .
6: loop
7: calculate E = D2V or E = FFT(Ξ2(IFFT(V ))). // derivative
8: calculate Wj := AjV +BjE, j = 0, 1. // projection from the right side
9: calculate Wj := AjV , j = 2, 3. // projection from the right side

10: calculate Hj := V HWj for j = 0, . . . , 3. // projection from the left side
11: calculate the desired eigenpair(s) of the projected equation P̃ (ν)y =

∑3
j=0 ν

jHjy = 0,
‖y‖ = 1 by a direct solver (QZ).

12: calculate the Ritz value in the original space u := V y.
13: calculate the residual r := P (ν)u =

∑3
j=0 ν

jWjy.
14: if ‖r‖∞ < εr then
15: calculate the component wise backward error bc as stated in (2.12).
16: calculate the component wise condition number κc as stated in (2.11).
17: calculate the forward error estimate ef := bcκc.
18: if ef < εf then
19: stop.
20: end if
21: end if
22: calculate w := P ′(ν)u =

∑3
j=1 ν

j−1Wjy.

23: solve the correction equation
(
I − wuH

uHw

)
P (ν)(I − uuH)t = −r approximately.

24: expand the search space V := [V, t].
25: orthonormalize V .
26: end loop

These aspects have already been realized in Algorithm 7. We will discuss the choice of the initial
search space V , the choice of the right Ritz pair of each projected system and a method to solve
the correction equation in the subsequent sections.

The orthonormalization process in line 5 and 25 of Algorithm 7 can be numerically realized
mainly in two ways. One possibility is to orthonormalize t against the columns of V . The
advantage is in the update process of V . Let

t̂ :=
(
I − V V H

)
t

be the orthonormal component of t with respect to V . First the search space is expanded as

V new :=
[
V t̂

]
and then the projection from the right side is updated as

W new
j :=

[
Wj Mj t̂

]
, j = 0, . . . , 3.

Finally the whole projected eigenvalue equation reads

Hnew
j :=

[
V H

t̂H

] [
Wj Mj t̂

]
=
[
V HWj V HMj t̂

t̂HWj t̂HWj t̂

]
=
[
Hj V HMj t̂

t̂HWj t̂HWj t̂

]
, j = 0, . . . , 3,
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where the largest block in the upper left corner is already known and the last row and column
needs to be calculated. The only problem with this approach is the numerical stability. The angle
of t against V might be very small and also with reorthogonalization applied twice it sometimes
happens that the columns of V become linearly dependent which causes the algorithm to break
down.

This can be avoided by the second possibility, which adds t first V ← [V, t] and then orthonormal-
izes the columns of V by QR or singular value decomposition (SVD). In general these methods
change all the columns of V and therefore Wj and Hj have to be calculated from scratch. When
dim(V ) is small this is only a tiny disadvantage, but when the search space is huge it really is
computational cost intensive. The computational cost of an SVD also depends strongly on the
dimension of the search space.

We do not worry about the computational costs on calculating the projected eigenvalue system,
further, because the subsequent ideas will achieve that the search space stays very small, i.e.,
less than 10.

The selection of the Ritz pair of the maximal growth rate does not guarantee to find the desired
eigenpair of the maximal growth rate. If the desired eigenvector is almost orthogonal to the
search space V , it might not be found. Further more, the Ritz values can be a very rough
approximation of the eigenvalues and so the decision if the gap of the Ritz value of the maximal
growth rate to the second most one is very small is unsafe. In this case several Ritz values need
to be improved by subsequent Jacobi-Davidson iterations until the accuracy of the Ritz values
is sufficient to determine the desired one.

If the angle between the search space and the eigenvector of the desired eigenpair is small, there
is at least one Ritz value that is close to the eigenvalue of the desired eigenpair. However, other
Ritz values can be approximated badly and thus one of them might attain the greatest imaginary
part.

Lemma 2.24 on page 22 says that the field of values F(V HPV ) of the Ritz pairs is contained in
the field of values F(P ) of the matrix polynomial P . However, F(P ) can be much larger than
the convex hull of the eigenvalues and thus the growth rate of the Ritz pairs is not bounded by
the eigenvalues. Summing up, the decision on the Ritz pair based on the Ritz values is highly
risky and cannot guarantee to find the eigenpair of the strongest growth rate.

On to physical reasons, it is not only the maximal growth rate =(ω) but additionally the pertur-
bation amplitude envelope φ has to be consistent with the physical surrounding. In a Tokamak
of our model, there are two remarkable points: the high field side (HFS) at θ = π mod 2π and
the low field side (LFS) at θ = 0 mod 2π. Hence, |φ|2 is expected to have extremal points at
these positions and to be smooth in between.

In the past Tokar et al. [38] solved the simpler eigenvalue equation as described in section 3.1.4.2
on page 41 by the Mathieu equation (3.14) and the suitable solution is the zeroth even Mathieu
function ce0 [3]. ce0 looks like the real part of the eigenfunction displayed in Figure 4.2(b,c).
The aim with the more complex eigenvalue equation is to find the eigenmode that is equivalent
to Mathieus ce0—equivalent in the sense of a homotopy between the averaged and the angular
dependent profiles.

Some investigation revealed the fact, that there are eigenpairs similar to ce0 (cf. Figure 4.2).
The eigenvalue equation of the anomalous transport eigenvalue problem (3.17) is evaluated at
several values of the wave number K⊥ ∈ [0.05, 0.6]. The plasma parameters we used belong to
TEXTOR. The three eigenvalues which have the maximal growth rate =(ω) > 0 are plotted
in Figure 4.2(a) for each wave number. The circle marks the eigenvalue of the smallest wave
number and the x-marks marks the eigenvalue of the largest wave number.
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(c) eigenfunction ce02 K⊥ = 0.34, ω = −0.023 + 0.103i
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(d) eigenfunction ce03 K⊥ = 0.25, ω = 0.103 + 0.029i

Figure 4.2: (a) The three eigenvalues of the largest imaginary part for several wave numbers of the
anomalous transport eigenvalue problem (3.17) with TEXTOR parameters. The curve of the eigenvalues
of ce01 has a kink at the wave number where the derivative of the factor γ in the eigenvalue equation is
not differentiable. (b-d) Eigenfunction at the wave number where the imaginary part of the three curves
in (a) is maximal. Here the eigenfunctions are normalized such that maxθ |φ(θ)| = 1 and the complex
phase is normalized such that the imaginary part vanishes at the LFS. The eigenfunctions ce01 and ce02
have the maximal intensity at the LFS and the minimal intensity at the HFS. The extremal intensity of
ce03 is located the other way round.
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In 4.2(b-d) the eigenfunctions are plotted. Here the eigenfunctions are normalized such that
maxθ |φ(θ)| = 1 and the complex phase is normalized due to Definition 3.5 on page 42. The
dashed line is the real part of the eigenfunction and the dash-dotted line the imaginary part.
The intensity |φ|2 is plotted by the solid line. This three eigenfunctions are similar to ce0 and
therefore we entitle them by similar names in the Definition 4.15. ce01 and ce02 have maximal
intensity at the LFS and minimal intensity at the HFS. The extremal intensity of ce03 is located
the other way round. The shape of the real part (dashed line) is similar to the eigenfunction
ce0 of the Mathieu equation (3.14). The curve of the eigenvalues of ce01 has a kink at the wave
number where the derivative of the factor γ in the eigenvalue equation is not differentiable.

Classification 4.15. Let the eigenfunction φ be normalized such that maxθ |φ(θ)| = 1 and the
complex phase complies with Definition 3.5 on page 42. The eigenfunction φ of equation (3.17) is
similar to the eigenfunctions of the Mathieu equation (3.14). Therefore we call the eigenfunction
which has the following characteristics ce01 (cf. Figure 4.2(b)):

• |φ(HFS)|2 < |φ(LFS)|2

• |=(φ)| � <(φ)

• <(φ(HFS)) < <(φ(LFS))

• =(φ(HFS)) > =(φ(LFS))

• The shape of the real and the imaginary part is similar to the shape of a sine function.

ce02 (cf. Figure 4.2(c)) are called eigenfunctions with the features:

• |φ(HFS)|2 < |φ(LFS)|2

• |=(φ(LFS))| < |<(φ(LFS))|

• |=(φ(HFS))| > |<(φ(HFS))|

• <(φ(HFS)) < <(φ(LFS))

• =(φ(HFS)) > =(φ(LFS))

• The shape of the real part is similar to a sine function.

ce03 (cf. Figure 4.2(d)) are called eigenfunctions of the characteristics:

• |φ(LFS)|2 < |φ(HFS)|2

• −<(φ(HFS)) > <(φ(LFS))

• |(φ)|2 has its maxima at the LFS and the HFS.

• The shape of the real part is like the sine function.

Remark 4.16. The classification of the Definition 4.15 is not perfect. There are constellations,
where some of the criteria are not fulfilled. However, a precise classification is not possible
without concerning all the plasma parameters in the eigenvalue equation which is too complex.
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Figure 4.3: The Fourier decomposition of the eigenfunction with an almost constant plasma profile
(gray) and a strongly inhomogeneous profile (black). The modulus of the Fourier coefficients αj in the
frequency space is plotted. The amplitude decreases at higher frequencies.

The absolute αj of the Fourier coefficients of ce01, ce02 and ce03 decay with an increasing
frequency |j|. The gray curve of Figure 4.3 shows the modulus of the amplitudes where the
frequencies are defined as exp(−ijθ). With this information, the obvious approach is to choose
the search space V in the Jacobi-Davidson method as

V =
[
exp(−ik~θ), exp(−i(k − 1)~θ), . . . , exp(−i~θ), 1, exp(i~θ), . . . , exp(ik~θ)

]
where k is in the range from 3 to 10. If the plasma parameters (temperature, density) are almost
constant this method works fine, but when the plasma parameter profiles become steep higher
frequencies are necessary. An example is the black curve in Figure 4.3. In such a case search
space of the naive method becomes huge and the performance low.

The weights of the frequencies in Figure 4.3 are strictly monotonous decreasing. This is only
one special case. In all our simulations for the eigenfunction of physical interest (ce01, ce02 or
ce03) there has always been observed that there is a k ∈ N, a strictly monotonous decreasing
curve g and a small number ε > 0 such that

|αj − g(|j|)| < ε ∀|j| > k

holds.

4.4 Multilevel Jacobi-Davidson approach

A more sophisticated approach to solve the eigenvalue equation (3.17) is to use a multilevel
approach to obtain a suitable initial search space V init by low computational costs. The idea
is to solve the eigenvalue equation on a coarse grid first. Due to the smoothness of the desired
eigenfunction a solution will exist on a coarse grid that approximates the desired solution on
the fine grid.

We will discuss the appropriate alignment of the grid points in the sense to make the coarse grid
approximation of the eigenvalue most accurate in section 4.4.3 on page 67. In the following we
assume to use a pseudo spectral method on an equidistant spaced grid.

On a grid of N = 8 points only, a direct solver can be applied. It allows to approximate the
desired eigenpair and to choose the candidate of interest. The eigenvector can be prolonged to
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a finer grid of e.g. twice the number of grid points by interpolation. There it is taken as the
initial search space V init in the Jacobi-Davidson algorithm that improves the accuracy of the
eigenpair approximation on the finer resolution. The result can be prolonged to an even finer
grid and improved again.

The Jacobi-Davidson algorithm is applied subsequently on different levels of the discretization.
Therefore we call Algorithm 8 the multilevel Jacobi-Davidson algorithm.

Algorithm 8 Multilevel Jacobi-Davidson algorithm to calculate m eigenpairs
Require: a full resolution of N = 2Lc grid points, where c ∈ N is the number of points on the

coarsest grid and L+ 1 the number of levels.
Require: a suitable grid G2kc for each level k = 0, 1, . . . , L of resolution.
Require: the number m ∈ N, m ≤ 3c of desired eigenpairs.
Require: a fixed wave number K⊥.
1: discretize and solve the eigenvalue problem (3.17) on Gc by a direct solver.
2: choose the m eigenpairs

(
ωGc

i , φGc
i

)
i=1,...,m

of interest.

3: for i = 1, . . . ,m do
4: // for each eigenpair
5: for l = 1, . . . , L do
6: // on each level of resolution
7: prolong the eigenvector φ

G
2l−1c

i to φ
G

2lc
i by interpolation.

8: discretize the eigenvalue problem on the grid G2lc.
9: improve the prolonged eigenpair

(
ω

G
2lc

i , φ
G

2lc
i

)
by the Jacobi-Davidson Algorithm 7,

where the initial search space V := φ
G

2lc
i is the prolonged eigenvector of the next

coarser grid.
10: end for
11: end for
12: the solution is

(
ωGN

i , φGN
i

)
i=1,...,m

.

Now we discuss the essential parts of the multilevel Jacobi-Davidson Algorithm 8: The plasma
parameters, like the temperature T and the density n, are restricted to the coarsest grid of c
(e.g. c = 8) grid points. The matrices of the cubic eigenvalue problem (3.17) are build on this
grid and all eigenpairs are calculated by a direct solver. The direct solver linearizes the cubic
matrix polynomial and applies the QZ algorithm on the linearization. Due to the low dimension
the direct solver is efficient.

Then the m ∈ N eigenpairs of physical interest are chosen among the 3c ones. For each of the m
selected eigenpairs, the following procedure is repeated. The eigenpair is prolonged to the next
finer grid G2c of twice the number of points. Now, the matrices of the eigenvalue problem are
build on the new grid and the Jacobi-Davidson algorithm is applied to improve the eigenpair.
Thereby the initial search space is the prolonged eigenvector. In each Jacobi-Davidson cycle the
Ritz pair closest to the prolonged solution of the coarser grid is selected. The definition of the
closest Ritz pair and a method to determine it is described in section 4.4.1.

Since the initial search space V is the prolonged eigenvector from the next coarser grid we hope
that there is one Ritz pair close to the desired eigenpair. It is close in the sense that the angle
between the search space and the desired solution is small. When the Jacobi-Davidson method
finishes, we have the improved eigenpair. This eigenpair can be prolonged to an even finer grid
and be improved again, until the finest grid G2Lc of 2Lc grid points is reached.

Many approaches can be found in the literature which apply multilevel or multigrid methods
to eigenvalue problems. The most traditional approach is to treat the eigenvalue problem as a



4.4 Multilevel Jacobi-Davidson approach 63

nonlinear equation and apply the full approximation scheme (FAS). See [20] and the references
therein. Another approach is to use the multilevel technique on the linear systems in the Rayleigh
quotient iteration. It requires special attention because the linear system is nearly singular and
a high accuracy of the solution is required. Contrary to these approaches, the multilevel Jacobi-
Davidson method developed in this work uses the multilevel technique to build up the initial
search space by constructing a good approximation of the desired eigenvector.

4.4.1 Choosing the right Ritz pair

This section deals with the selection of the right Ritz pair in the multilevel Jacobi-Davidson
method. We have the prolonged eigenpair (ν∗, u∗) of the next coarser grid and want to use it as
the reference.

Consider the case that an approximation (ν∗, u∗) of a desired but yet unknown eigenpair (ω, φ)
is given. Depending on the accuracy of (ν∗, u∗), the Jacobi-Davidson method is very efficient
if one takes u∗ as the initial search space V1 = u∗. Within each cycle the Ritz pair closest to
(ν∗, u∗) is to choose. In order to know which Ritz pair is the closest one, we define a distance
measure of eigenpairs that we derive in the following.

In the Jacobi-Davidson Algorithm 6 on page 31 we set the initial search space V1 = u∗ and in
the first cycle we calculate the Ritz pairs of

V H
1 P (λ)V1y = 0, y ∈ C1, ‖y‖ = 1 ⇔ uH

∗ P (λ)u∗ = 0.

Each Ritz pair can be written as uj = V1yj = u∗ (modulo complex phase) for j = 1, . . . ,deg(P ).
Thus, all Ritz vectors are equal to u∗ and the choice can only rely on the Ritz values νj . If there
are equal Ritz values, the specific Ritz pairs are equal.

In subsequent iterations the dimension of R(V ) is greater than two and uj 6= u∗ in general.
Due to the fact, that the whole set of the eigenvectors of the polynomial eigenvalue equation
is linearly dependent and the eigenvalues are not necessarily distinct (see Figure 4.11), it is
necessary to consider both, the Ritz value and the vector.

The norm ‖u∗ − uj‖ is a bad idea to measure the distance because of the freedom to choose
the complex phase of the eigenvectors. In [11] the distance of two subspaces is defined by the
Eucleadian distance of the associated orthogonal projections. In our case of two one dimensional
subspaces R(u∗),R(uj) ⊂ CN (‖u∗‖ = 1, ‖uj‖ = 1) it reads

dist
(
R(u∗),R(uj)

)
:= ‖u∗uH

∗ − uju
H
j ‖2

and the theorem 2.6.1 in [11] says

sim
(
R(u∗),R(uj)

)
= |uH

∗ u
⊥
j | = | sin

(
∠(u∗, uj)

)
| =

√
1− cos2

(
∠(u∗, uj)

)
=
√

1− |uH
∗ uj |2.

We are interested in a similarity measure sim(u∗, uj) such that it provides a value in [0, 1] which
depends on the similarity of the vectors such that it is one if both eigenfunctions are equal
(modulo complex phase) and zero if they are most unequal. Related to the distance of two
subspaces, one possibility to define the similarity of u∗ and each Ritz vector uj is by the angle
between them

sim(u∗, uj) := |uH
∗ uj | = |(uH

∗ V )yj |, ‖u∗‖2 = 1, ‖uj‖2 = 1.

Because of sim(u∗, uj) = | cos
(
∠(u∗, uj)

∣∣, this similarity measure is most sensitive with nearly
orthogonal eigenfunctions and most insensitive with almost parallel eigenfunctions.
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A natural measure of the distance between the eigenvalue approximation ν∗ and each Ritz value
νj is the Euclidean distance

sim(ν∗, νj) := |ν∗ − νj |.

We transform the Euclidean distance into a similarity measure as

simα,β(ν∗, νj) := exp

(
−α

(
dist(ν∗, νj)
|ν∗|

)β
)
, α ∈]0,∞[, β ∈ {1, 2}.

Of course there are many different possibilities to map [0,∞[ onto [1, 0], but the exponential
approach with β = 2 consists of a suitable sensitivity, such that large distances of eigenvalues
have a similarity close to zero and eigenvalues that are close together have a similarity close
to one. β = 1 is preferable to distinguish very tiny distances of eigenvalues. In the multilevel
Jacobi-Davidson algorithm the eigenvalue of reference (ν∗) is an approximation and therefore
we prefer β = 2.

We call two eigenpairs (Ritz pairs) similar, if the values and the vectors are similar. We realize
this “and” catenation by multiplying both similarity measures

simα,β

(
(ν∗, u∗), (νj , uj)

)
:= simα,β(ν∗, νj) sim(u∗, uj), . (4.7)

The parameter α controls the weighting between the similarity of the eigenvalue and the eigenvec-
tor. A greater α emphasis the eigenvalues and a smaller α shifts the weight to the eigenvectors.
An appropriate choice for the weighting parameter turned out to be α = 1.

In each cycle of the multilevel Jacobi-Davidson algorithm the Ritz pair with maximum
simα,β

(
(ν∗, u∗), (νj , uj)

)
, j = 1, . . . ,degP · dimV is chosen.

Another possibility to consider the eigenvector and the eigenvalue is the angle of the eigenvectors
of the linearized system

sim
(
(ν∗, u∗), (νj , uj)

)
=

∣∣∣∣∣∣∣
1
cj

 u∗
ν∗u∗
ν2
∗u∗

H  uj

νjuj

ν2
j uj


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1
cj

 u∗
ν∗u∗
ν2
∗u∗

H  V yj

νjV yj

ν2
j V yj


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣ u
H
∗ V yj

‖u∗‖‖yj‖
1 + ν̄∗νj + ν̄2

∗ν
2
j√

(1 + ν̄∗ν∗ + ν̄2
∗ν

2
∗)(1 + ν̄jνj + ν̄2

j ν
2
j )

∣∣∣∣∣∣
(4.8)

where

cj =

∥∥∥∥∥∥
 u∗
ν∗u∗
ν2
∗u∗

∥∥∥∥∥∥
∥∥∥∥∥∥
 uj

νjuj

ν2
j uj

∥∥∥∥∥∥
is the normalization factor. For linear eigenvalue equations, the existence of the Jordan normal
form of the linear algebra ensures the eigenvectors (including the generalized eigenvectors) to
create a basis. Thus, the eigenvectors of the linearized system are linearly independent and the
distance measure above is well posed to detect the right Ritz pair. Problems with numerical
instability due to almost linearly dependent vectors have never occurred in the anomalous trans-
port eigenvalue problem. The distance between the desired eigenpair and the other eigenpairs
is large enough due to the fact that the eigenfunction of the eigenpairs with similar eigenvalues
is different.

Comparing both measures, distα,β allows to weight between the eigenvector and the eigenvalue.
However, this can be a disadvantage as well, if the proper parameters are unknown. The latter
measure is parameter free. Equation (4.7) and (4.8) yield the same measure on the eigenvectors,
but a different measurement of the eigenvalues. The effect is visualized in Figure 4.4.
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Figure 4.4: A comparison of the similarity measures (4.7) (solid line) and (4.8) (dashed line), where the
eigenvectors are equal, ν∗ = 1, α = 1 and β = 2.

In a local neighborhood the measurements of the two distance measures are almost equal with
α = 0.5 but (4.8) has a local minima and does not become zero with an eigenvalue that is far
away.

Both techniques work fine, when the approximation (ν∗, u∗) is closer to (ω, φ) than to other Ritz
pairs. In case of the anomalous transport eigenvalue equation the multilevel Jacobi-Davidson
approach fulfills this condition with the eigenpairs of interest.

Example 4.17. The similarity of the Ritz pairs (νj , uj) to the eigenpair of reference (ν∗, u∗)
in the Jacobi-Davidson algorithm. The eigenpair of reference is the prolonged coarse grid ap-
proximation. Here (4.7) is applied with α = 1, β = 2 and the selected value is printed bold.
dimV = 1:

sim
(
(ν∗, u∗), (νj , uj)

)
j=1,...,9

=
(
3.64 · 10−55, 1.76 · 10−21,0.9999992

)
dimV = 2:

sim
(
(ν∗, u∗), (νj , uj)

)
j=1,...,9

=
(
0, 8.24 · 10−55, 9.07 · 10−22,0.9999962, 2.33 · 10−3, 1.57 · 10−2

)
dimV = 3:

sim
(
(ν∗, u∗), (νj , uj)

)
j=1,...,9

=(
0, 0, 0, 2.46 · 10−58, 9.89 · 10−22, 2.95 · 10−8,0.9999962, 0.135, 3.34 · 10−2

)
We will continue the discussion in section 4.5.1 on page 77 where the similarity of the eigenpairs
from two eigenvalue equations that differ in the wave number K⊥ are compared.

4.4.2 Solving the correction equation

Hitherto the essential parts of the Jacobi-Davidson method have been discussed except for a
suitable method to solve the correction equation (2.7). In section 2.3.2 on page 31 it is mentioned
to solve it

• directly by GMRES with a suitable preconditioner

• preconditioned by the inverse projections (2.9)

• by the one step approximation (4.12) with an approximate inverse Q of P (ν)
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Remember, that there is no need to solve the correction equation to high accuracy due to the
underlying Newton step. A moderate accuracy is sufficient.

The projections within the correction equation (2.7) destroy the sparsity of the original matrix
polynomial P . An evaluation of the projected matrix applied to a given vector has still an effort
in O(N) with the finite differences and in O(N log(N)) with a pseudo spectral method, but the
matrix itself loses its structure and becomes dense. This allows to use an iterative solver like
GMRES, combined with preconditioning by inverse projections, if necessary.

The inverse projections and the one step approximation require an approximate inverse Q such
that QP (ν) ≈ I. One step approximation (4.12) with exact inverse is equivalent to solve the
correction equation (2.7), but it allows to use the structure of the underlying matrix polynomial.
The inverse projection additionally requires an iterative solver. Therefore, one step approxima-
tion is preferable.

With the finite differences discretization (denoted by the subscript L), PL(ν) is a periodic
band matrix and its LU decomposition preserves the sparsity. The sparsity pattern of the LU
decomposition of PL(ν) without row interchanges is shown in Figure 4.5. The effort is twice
as much as with a band matrix of the same band width, but the quality is much better than
ignoring the entries at the anti-diagonal corners.

(a) PL(ν) = LU ∈ CN×N (b) L (c) U

Figure 4.5: The sparsity pattern of (a) periodic band matrix (p = 3), (b) lower and (c) upper triangular
factor of the LU decomposition without row interchange. The number of non-zero entries is in O(pN).

If the derivatives are approximated by a pseudo spectral method (denoted by subscript s), Ps(ν)
is a dense matrix and the inversion is very expensive (O(N3) operations). Due to the fact, that
the correction equation only needs to be solved approximately, it is possible to apply a finite
difference matrix inside of the correction equation although the pseudo spectral method is used
otherwise.

In the multilevel Jacobi-Davidson approach, there is a good approximation of the eigenvalue
available, namely the solution corresponding to the next coarser resolution. This allows to cache
the factors L and U of the LU decomposition and reuse them in subsequent Jacobi-Davidson
cycles until the change of the eigenvalue approximation ν becomes too large. Then a new
LU decomposition is necessary. Two advantages arise. First, the LU decomposition needs to
be updated much more seldom than once per cycle and secondly the expansion of the search
space is done by vectors very close to the ones produced in the Rayleigh quotient iteration (cf.
Algorithm 3 on page 25). By this strategy the dimension of the search space V stays small and
the eigenvectors not of interest have a much smaller component parallel to V , in general.
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The one step approximation

t = αQ(ν)P ′(ν)u−Q(ν)r, α =
uHQ(ν)r

uHQ(ν)P ′(ν)u

is formulated with the approximate inverse Q(ν). However it is sufficient to solve the linear
systems

P (ν)x = r and P (ν)y = P ′(ν)u.

This can be done by backward and forward elimination based on the decomposition LU = P (ν).
So the matrix Q, which is a dense matrix in general, is never calculated.

The multiplication of a vector with Ps(ν) can be done in O(N log(N)) operations if FFT is
used. This allows to apply GMRES to the linear systems. The required preconditioner can
be (PL(ν))−1, again realized by LU decomposition. However, using finite differences in the
correction equation turned out to be sufficient and the effort with the preconditioned GMRES
is really dispensable.

If the physical model is extended to two or more dimensions in the future, it may be efficient to
solve the correction equation, which for a fixed eigenvalue is some kind of second order partial
differential equation boundary value problem, by the algebraic multigrid techniques.

4.4.3 Choice of grid for the multilevel technique

We want to calculate the desired eigenpair with low computational cost, thus the number of grid
points on the coarsest grid has to be as small as possible and additionally the accuracy of the
coarse grid solution has to be high. Therefore a good assembly of the grid points is essential.
Figure 4.6 displays the eigenfunction of interest with MAST parameters. If we discretize the
eigenvalue equation by n points equidistantly spaced, the major part of points will be in the
area where φ is almost constant.
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Figure 4.6: The real part <(φ) (dashed curve), the imaginary part =(φ) (dash-dotted curve) and the
intensity |φ| (solid curve) of an eigenfunction φ of the anomalous transport eigenvalue equation (3.17).
The eigenfunction is almost constant at the HFS.

Let GT be the grid that is adequate to represent the temperature and the density profile. In
the case of MARFE at the HFS (θ = π), there is a deep and narrow temperature drop at the
HFS. Hence, the distance of grid points is taken smaller in this region. Therefore coarsening
GT is not qualified to represent the eigenfunction adequately. Thus a different coarse grid GC is
required to represent φ well. In Figure 4.7(a) we see that the cosine (dashed line) is a suitable
function to arrange the grid points.

We are in the paradox situation where we need to know the eigenfunction in order to find the
suitable grid to calculate it. Later on we will see that the self consistent calculation of the
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plasma parameters requires subsequent evaluations of the eigenvalue equation (3.17) with very
small changes in the matrix coefficients. Thus, a good sample for φ is the result of a previous
evaluation which results in a similar eigenfunction.
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(a) eigenfunction
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(b) grid generating functions

Figure 4.7: (a) 8 points (squares) are chosen from intensity of eigenfunction |φ|2 (solid line) to fit to the
values of a cosine evaluated on equidistantly spaced grid points (asterisks). The resulting grid generating
function g is regularized (r = 2) (b) and the eigenvalue solver sees the curve through the x-marks in (a).
The grid GT has assembled many grid points close to π where the MARFE develops and temperature
and density profiles are very steep. However the eigenfunction is almost constant at this range and a
different grid GE is much more sufficient.

Now, we assume to know the shape of the eigenfunction approximately and consider how we
can find an adequate grid. We choose a grid

GC = (aj)j=1,...,n, 0 = a1 < a2 < . . . < an < 2π,

such that |φ|2 mapped onto [−1, 1] is equal to the cosine values at the grid points:

2
|φ(aj)|2 −minθ |φ(θ)|2

maxθ |φ(θ)|2 −minθ |φ(θ)|2
− 1 = cos

(
2πj

n

)
. (4.9)

In Figure 4.7 (a), the points from the right hand side of ((4.9)) are marked by asterisks and the
corresponding ones on |φ|2 are marked by squares. The dotted lines illustrates their connection.

Let gC : Gu → GC be the grid generating function from equidistant grid Gu to GC. A
disadvantage of gC are potentially large derivatives, which strongly reduce the accuracy of the
finite differences approximation. In Theorem 4.10 on page 53 it is shown, that a smooth grid
generating function from the equidistant spaced grid to the actual one is essential for a high
accuracy of the finite difference approximation.

A compromise between the optimal assembly of the grid points and the accuracy of the finite
differences derivative approximation is achieved by the following regularization strategy. We
arrange the positions aj of GC in the vector ~a and define the regularized grid generating function

gE(θ) = θ +
r∑

j=1

pj sin(jθ)

with a moderate r ∈ N, e.g., r = 2. The optimal coefficients pj ∈ R are defined in the least
squares sense ∥∥∥∥∥∥gC(~θ)︸ ︷︷ ︸

=~a

−

~θ +
r∑

j=1

pj sin(j~θ)

∥∥∥∥∥∥
2

→ min, e.g. r = 2 (4.10)
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which removes the high frequencies that lead to large derivatives. If the parameters pj are
arranged in the vector ~p and

S :=
[
sin(~θ), sin(2~θ), . . . , sin(r~θ)

]
, θj =

2πj

N

then the least square solution is given by

~p = (SHS)−1SH(~a− ~θ).

The regularized grid GE = S~p can be created on each level of resolution by evaluating the sum
over the frequencies of the sine (dash-dotted curve in Figure 4.7 (b)). On GE the intensity |φ|2
does not look like the cosine values any longer, but it still covers the range much more uniform.

Lemma 4.18. The function

g : Gu → GC, g(θ) = θ +
r∑

j=1

pj sin(jθ)

is strictly monotone if ∣∣∣∣∣∣
r∑

j=1

jpj cos(jθ)

∣∣∣∣∣∣ < 1

holds.

Proof.

g′(θ) = 1 +
r∑

j=1

jpj cos(jθ) > 0

If the solution gE from (4.10) does not fulfill Lemma 4.18, we reduce the coefficients ~p to c~p,
where

1
c

:= ε+

∣∣∣∣∣∣
r∑

j=1

jpj cos(jθ)

∣∣∣∣∣∣ , 0 < ε� 1.

Then gE becomes a grid generating function.

4.4.4 Multilevel technique on optimized grids

We have already explored the fact that the desired eigenfunction is smooth and therefore the
desired eigenpair can be approximated on a coarse grid GE. This decreases the computational
effort significantly. In order to be able to start on a very coarse grid with N = 8 grid points only,
we choose the grid GE via the grid generating function gE suggested in the previous section.

The continuous eigenvalue equation (3.17) is discretized on the grid GE. It can be solved by the
multilevel Jacobi-Davidson Algorithm 8 on page 62. From the eigenpair the anomalous particle
flux Γ⊥ can be calculated. However, the anomalous particle flux needs to be calculated on the
grid GT of the other plasma parameters. Therefore the eigenvector is required on the grid GT.
The easiest way to transfer the eigenvector from grid GE to GT is interpolation. But this is not
the best possibility, because the interpolation may cause a significant loss of accuracy, if both
grids differ strongly.
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l = 0

l = 1

l = 2

GE
16

GE
4

G8
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16

Figure 4.8: There are two grids, GT
16 optimal for the temperature profile and GE

16 optimal for the
eigenvectors. The filled circles belong to the specific grid and the positions of the open circles are
skipped.

Summing up, the optimal grid to calculate the eigenvalue on the coarsest level is GE and the
final solution is required on the grid GT. The idea is to discretize the eigenvalue equation of the
coarsest level on the coarse grid of GE and the equation of the finest grid on GT. The grid at
the intermediate levels of resolution is constructed by a linear transitin from GE to GT. This
yields the grid generating function

gδ := (1− δ)gE + δgT, δ ∈ [0, 1]

where δ is zero on the coarsest level of resolution and one on the finest level of resolution. See
Figure 4.8 for an example with three levels of resolution.

The filled circles in Figure 4.8 mark the grid points actually available and the open circles are the
skipped ones. First the eigenvalue problem is solved on the coarse gird GE

4 and the eigenvalue
approximation obtained is prolonged to the next finer grid G8 = (1− δ)GE

8 + δGT
8 (δ = 0.5) and

is improved there. The improved eigenfunction is prolonged to GT
16 and improved again.

The prolongation between each level of resolution requires the interpolation of the eigenfunction
approximation, but the final eigenvalue evaluation allows to solve the solution on the required
grid GT directly. The difference between the position of grid points from adjacent levels reduces
if the number of total levels of resolution is increased.

The idea of the smoothly adopted grid positions can be implemented easily in Algorithm 8 by
adding the lines

set δ := l
L .

set grid G2lc := (1− δ)GE
2lc

+ δGT
2lc

.

at the beginning of the inner loop.

A direct solver is applied to the eigenvalue equation on the coarsest grid. Therefor a pseudo
spectral method with its dense derivative matrix is no disadvantage. With a pseudo spectral
method the coarsest grid GE is chosen equidistantly spaced and moves step by step to GT at
subsequent levels of resolution as it is described above.

The parameter δ ∈ [0, 1] of the convex combination can be interpreted as homotopy parameter
[46] because gδ is a homotopy.

4.4.5 Complex symmetric eigenvalue equation

The eigenvalue equation (3.12) of the anomalous transport is complex symmetric in its rational
formulation (3.16). This feature is lost in the cubic polynomial formulation (3.17). However,
if the eigenvalue is known, the expression (3.18) of the left eigenvector allows to preserve this
feature.
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In the multilevel Jacobi-Davidson Algorithm 8 on page 62 we always have a good approximation
ν of the desired eigenvalue ω. The multiplication of the cubic eigenvalue matrix polynomial P
from the left with the denominator evaluated at the eigenvalue approximation ν

Pν(ω) := Diag(c8 + νc9)−1P (ω)

makes Pν almost complex symmetric, where “almost” means that∥∥Pν(ω)− Pν(ω)T
∥∥

is rather small.

The only advantage of the complex symmetric eigenvalue equation is the simple relation between
the left and the right eigenvector. In order to exploit this feature we again consider the projected
system in the Jacobi-Davidson algorithm. The original aim is to find (ω, φ) such that

P (ω)φ = 0

holds.

Let V be the matrix whose columns are a basis of the current search space. In order to handle
the system, the dimension of the parameter space is reduced from CN to R(V ), but

P (ω)V y = 0, y ∈ Ck

is an overdetermined system. Therefore we require the Galerkin condition

P (ω)V y ⊥ R(Sν), Sν ∈ CN×k, y ∈ Ck,

where Sν = V has been used earlier. However with

Sν :=
(
Diag(c8 + νc9)−1V

)
the projected system

V TPν(ω)V =
(
Diag(c8 + νc9)−1V

)T
P (ω)V = ST

ν P (ω)V

is complex symmetric if ν is the exact eigenvalue. Practically, the accuracy of ν is not good
enough to apply a complex symmetric solver on the projected eigenvalue problem. However,
one advantage still holds for the approximate ν:

R(Sν) ⊥ rS := P (ω)V y and Pν(ω)V y = yTST
ν P (ω) =: rV ⊥ R(V )

The residual rS of the right eigenvector approximation is perpendicular to the left eigenvector
approximation, which can be used to increase the accuracy of the Ritz value. An experimental
comparison of the complex symmetric approach, is presented in section 4.4.7.

Remark 4.19. The bilinear form xT y, x, y ∈ CN within the complex symmetric approach is
not a scalar product because xTx = 0⇒ x = 0 is not true in general.

In [31] the advantage of complex symmetric equations is explained in detail. Within the correc-
tion equation (2.7) some Hermitian expressions change to transposed ones,(

I − P ′(ν)uuT

uTP ′(ν)u

)
P (ν)

(
I − uuH

uHu

)
v = −r (4.11)
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and the corresponding one step approximation is

v =
uTQ(ν)r

uTQ(ν)P ′(ν)u
Q(ν)P ′(ν)u−Q(ν)r. (4.12)

This implies to define x ⊥ y ⇔ xT y = 0. However, if x ⊥ y ⇔ xHy = 0 is assumed, the one step
approximation is (2.7) again.

The version with the transpose runs into problems if quasi-null vectors

xTx = 0, x 6= 0

appear in the computation or as solution. The problem arises if uTu = 0 in (4.11).

4.4.6 Prolongation

We discuss the interpolation in the prolongation step. Possible interpolations are linear interpo-
lation, shape preserving cubic Hermite interpolation [8], splines and trigonometric interpolation.
Figure 4.9 illustrates the different options. The complex phase is normalized, such that the imag-
inary part of φ vanishes at the LFS:

φ← φ
|φ(θLFS)|
φ(θLFS)

.

The intensity is normalized such that

1
2π

∫ 2π

0
|φ|2 dθ = 1,

where the integral is approximated by the trapezoidal rule on 4 or 8 grid points, respectively.
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Figure 4.9: The open circles are the values of the eigenpair calculated on a grid of 4 points. The data is
interpolated by linear (dotted line), cubic (dash-dotted line), splines (dashed line) and trigonometric (solid
line) interpolation. The complex phase is normalized, such that the imaginary part of the eigenvector
vanishes at the LFS. The amplitude is normalized with respect to the intensity on an eight point grid.
The eigenvector calculated on a grid of 8 points is marked by x-marks.

The linear interpolation is obviously the worst one. Within the other candidates it is not clear
which one is the best in general. In order to analyze the impact of the interpolation, a statistical
analysis is done. The results are displayed in Figure 4.10. The following section presents further
explanations.



4.4 Multilevel Jacobi-Davidson approach 73

4.4.7 Benchmark

In the previous sections several possibilities for the approximation of the derivative, the pro-
longation of the coarse grid approximation and the complex symmetric approach have been
discussed. In order to compare the impact of each variant on the number of Jacobi-Davidson
iterations, i.e., the dimension of the final search space V , the eigenvalue equation is evaluated for
15 different magnetic geometries of the Tokamak MAST. The physical background is explained
in Chapter 5, but here it is sufficient to know, that each magnetic geometry changes the metric
coefficients and therefore the eigenvalue equation.

The statistic is displayed in Figure 4.10. In (a) linear interpolation is applied. In the left diagram
there are four groups, each of seven bars. The first group (1) is calculated with fourth order
finite differences and the second one (2) is calculated with the pseudo spectral method. The
third group (3) again uses finite differences and additionally the complex symmetry from section
4.4.5. The fourth group (4) is calculated with the pseudo spectral method together with the
complex symmetry. Each bar displays the minimum, the average and the maximal dimension of
the final search space. Within each group the bars from the left to the right contain the values
on the resolutions N = 16, N = 32, N = 64, N = 128, N = 256, N = 512 and N = 1024.

At each level of resolution, the Jacobi-Davidson cycle is iterated until the forward error estimate
ef (cf. section 2.4.3) of the eigenvalue ω is below 10−6. Let ω∗ be the eigenvalue calculated on
the finest resolution N = 1024. The accuracy of the eigenvalue ω on each level of resolution
N = 8 to N = 512 is displayed in the plot at the right side. The arrangement of the bar groups
is the same as on the left side.

Within each Jacobi-Davidson cycle the correction equation is solved by the one step approxi-
mation, where the derivative matrix D2 are finite differences. The LU -decomposition of P (ω)
is recalculated in each cycle.

In (b), (c) and (d) the simulation is recalculated with the specific interpolation method.

For the component wise condition number κc of the matrix polynomial P evaluated at the
eigenvalue ω∗ holds

7.9 · 103 < κc < 4.1 · 106, 〈κc〉 = 4.2619 · 105, where the standard deviation is 5.1474 · 104.

The component wise condition number strongly depends on the specific magnetic geometry. In
turn a condition number κc = 106 requires a backward error bc ≤ 10−12 in order to ensure the
forward error to be ef = κcbc ≤ 10−6. Such a high accuracy is necessary to find the optimal K⊥
value by means of polynomial interpolation prediction technique, which is applied in subsequent
simulations.

On a low resolution the accuracy of the eigenvalue is always very small. From N = 16 to
N = 128 it rises and the dimension of the final search space reduces. On the high resolution
N = 512 and N = 1024 it depends on the method, whether the dimension of the final search
space reduces further or increases.

With the pseudo spectral method in comparison to the finite differences the accuracy of the
eigenvalue approximation is always much better on a medium sized resolution (N ≥ 64). On
the N = 64 point grid the accuracy of the pseudo spectral method is better than with the finite
differences on N = 512. The accuracy is close to the machine precision with respect to the
condition number kc.

The complex symmetric approach reduces the dimension of the search space but it sometimes
runs into problems on grids of N ≥ 512.

The linear interpolation is worst. The shape preserving cubic interpolation and the splines are
feasible, but they sometimes are problematic at a high resolution. The best method at all is the
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(a) prolongation by linear interpolation
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(b) prolongation by shape preserving cubic hermite interpolation
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(c) prolongation by splines
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(d) prolongation by trigonometric interpolation

Figure 4.10: First column: Number of Jacobi-Davidson iterations, i.e., dimension of the search space
V , improving eigenpair on resolution N = 16, 32, 64, 128, 256, 512 and 1024 (left to right) for 15 different
magnetic geometries (γj) from Figure 5.1. Each bar displays minimum, average and maximum value.
Group (1) finite differences, (2) pseudo spectral method, (3) finite differences with complex symmetry
(cf. section 4.4.5) and (4) pseudo spectral method with complex symmetry. Second column: Distance of
eigenvalue approximation to final solution on each level of resolution (N = 8, 16, . . . , 512).
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interpolation by Fourier transform together with the derivative by the pseudo spectral method
and the complex symmetry. The FFT is most suitable because of the decreasing weights of
higher frequencies as can be seen in Figure 4.3 on page 61.

The efficiency of the multilevel Jacobi-Davidson approach becomes clear because the number of
iterations, i.e., the dimension of the final search space is very small in general. With the Fourier
interpolation it is below six and on bigger N even less or equal two. The search space dimension
on the high resolution is most essential because the computational cost rises at least linear to N .
Due to the low dimension of the search space, the linearized eigenvalue equation of the projected
system has a dimension degP · dimV that is very small and can be solved efficiently by the QZ
algorithm.

4.5 Optimal wave number K⊥

Up to now, the multilevel Jacobi-Davidson approach is developed to calculate the desired eigen-
pair for a given eigenvalue equation. To be more precise, the wave length parameter K⊥ is fixed
while the eigenvalue equation is solved. The original aim is to find the eigenpair (ω(K⊥), φ(K⊥)),
such that =(ω(K⊥)) is maximal. Therefore, a maximization process over K⊥ is necessary. The
idea is as follows. The eigenvalue equation is solved for a few Kj

⊥ values on the physically rele-
vant domain. The growth rate =(ω(Kj

⊥)) is determined and a prediction Kpred
⊥ on the location

of the optimum is calculated by some interpolation technique. At Kpred
⊥ the eigenvalue equation

is solved and the result is compared to the growth rate of the former evaluated wave numbers.

Some difficulties arise. To describe it in a suitable context the following definition is necessary.

Definition 4.20. Two eigenpairs (ω(Kj
⊥), φ(Kj

⊥)), j ∈ {1, 2} are said to be the same mode or
eigenmode if and only if

f(α) :=
(
ω
(
αK1

⊥ + (1− α)K2
⊥
)
, φ
(
αK1

⊥ + (1− α)K2
⊥
))
, α ∈ [0, 1]

is a smooth function, where the eigenvector is modulo its complex phase and normalized. Hence,
α is the homotopy parameter and the eigenpairs of one mode at different wave numbers are a
homotopy (cf. [46]).

Remark 4.21. Assume A,B ∈ CN×N . The eigenvalues λ and the null space of (A−λB) depend
continuously on the matrices entries. Therefore, the eigenpairs of the anomalous transport
eigenvalue equation (3.16) depend continuously on the wave number parameter K⊥. Thus, the
path of the eigenvalues of one mode creates continuous curve in the complex plain. Due to the
fact that the factor γ in (3.16) is continuous at each wave number but not differentiable at some
specific wave numbers, the path of the eigenvalues with respect to the wave number is continuous
but may have discontinuous derivatives. Such a discontinuity is found in ce01 in Figure 4.2(a)
on page 59. It is not a specific feature of ce01 and there are different plasma parameters where
it happens with different eigenmodes.

At each wave number one or a few eigenvalues are obtained and it is only reasonable to compare
the ones of the same mode. Therefore a method is required which correlates the eigenpairs of
the adjacent wave numbers.

In Figure 4.11 the eigenvalues (dots) of eight modes are plotted in the complex plain for 50
wave numbers K⊥ ∈ [0.1, 0.5] spaced equidistantly. At K⊥ = 0.3 the eight eigenpairs (◦) of the
maximal growth rate are calculated and tracked for subsequent wave numbers by the method
deduced in the subsequent sections. In the plot the eigenvalues of each mode are connected by
lines. There is one point, where the paths of at least five eigenvalues cross each other. Thus,
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Figure 4.11: The path of the eigenvalues of (3.17) in the complex plane for K⊥ ∈ [0.1, 0.5]. At K⊥ = 0.3
the 8 eigenvalues of maximal imaginary part (◦) are calculated. For additionally 49 wave numbers K⊥
equidistantly spaced in [0.1, 0.5] the 8 eigenvalues of the same mode are tracked (·) and its path is
marked by a line in the plot. There is one point, where the paths of at least 5 eigenvalues cross each
other. The position with maximal growth rate is marked by × and the position where the contribution
to the anomalous transport is maximal is marked by �.
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tracking the modes cannot rely on the eigenvalue itself, but additionally has to concern the
eigenvector.

4.5.1 Arranging eigenpairs in modes

For the k ∈ N wave numbers K1
⊥ < . . . < Kk

⊥ ∈ [Kmin
⊥ ,Kmax

⊥ ] the m ∈ N eigenpairs(
ω

Ki
⊥

l , φ
Ki
⊥

l

)
l=1,...,m

are calculated. The eigenpairs of two adjacent wave numbers Ki
⊥ and Ki+1

⊥ are compared in
order to find the correlated eigenpairs and arrange them as discrete points of continues modes
(ωl(K⊥), φl(K⊥)).
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Figure 4.12: Two examples of the growth rate maximization by Algorithm 10. (a, c) The asterisks
mark the three maximal eigenvalues of the twelve discretized wave numbers. The eigenvalues that belong
to the same mode are connected by lines. The dots are the additionally evaluated positions within the
search procedure and the open circles mark the maximum. The x-marks in (c) mark the additionally
required data in order to have three points for the quadratic polynomial interpolation. In (b) and (d) on
the right side the intensity shape of the eigenfunctions is plotted.
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The eigenvalues depend continuously on the entries of the matrices of the eigenvalue equation
and therefore ωj(K⊥) is a continuous trajectory in the complex plane. One might try to trace
these trajectories, however, this is highly unstable when the trajectories are close together or
cross each other (see Figure 4.11). Then the grid of the wave number range has to be very fine
which results in a large number of the evaluations of the eigenvalue equation and thus large
computational costs. Even on an infinitely fine grid, the paths of two eigenvalues can be that
close there is no chance to distinguish the modes. Additionally the eigenvalue paths of (3.17)
have non differentiable points as has been described in Remark 4.21 on page 75.

A different approach to distinguish the modes is the shape of the eigenfunction, in particular
the angle. Let φ be an eigenfunction at the wave number K1

⊥ and ψ an eigenfunction at the
wave number K2

⊥. The angle between the two eigenfunctions is

∣∣cos
(
∠(φ, ψ)

)∣∣ =
∣∣∣∣∣∣

∫ 2π

0 (φ(θ))H ψ(θ) dθ√∫ 2π

0 (φ(θ))H ψ(θ) dθ
√∫ 2π

0 (φ(θ))H ψ(θ) dθ

∣∣∣∣∣∣ = 1
2π

∣∣∣∣∫ 2π

0
(φ(θ))H ψ(θ) dθ

∣∣∣∣ .
The modulus is taken because the complex phase of the eigenfunctions is not defined by the
eigenvalue problem. The second equality holds due to the earlier introduced normalization of
the eigenfunctions. Since polynomial eigenvalue problems have a number of eigenpairs that is
a multiple of the space dimension, the eigenfunctions are linearly dependent and therefore this
technique cannot guarantee success.

However, in case of the anomalous transport eigenvalue problem, the eigenmodes of physical
interest can be successfully distinguished by a combination of the angular criteria and the dis-
tance of the eigenvalues. This comes from the fact, that the eigenfunctions of physical interest
differ from the remaining eigenfunctions by the number of maxima and minima and ce01 to ce03
have well separated eigenvalues (cf. Figure 6.12 on page 112). The criteria to detect the modes
is similar to the selection of the right Ritz pair within the multilevel Jacobi-Davidson algorithm
in section 4.4.1. Here, the method (4.7) is fine, whereas the method (4.8) requires the adjacent
wave numbers to be much closer than the first one.

We assume that n1 eigenpairs at K1
⊥ and n2 eigenpairs at K2

⊥ have been calculated. For a better
readability we define the abbreviations

pi :=
(
ωi(K1

⊥), φi(K1
⊥)
)

for i = 1, . . . , n1

and
qj :=

(
ωj(K2

⊥), φj(K2
⊥)
)

for j = 1, . . . , n2.

First the similarity distance (cf. section 4.4.1 on page 63) of an eigenpair calculated at K1
⊥ to

an eigenpair calculated at K2
⊥ is measured as

Ci,j := sim(pi, qj),

where Ci,j ∈ [0, 1] holds and sim(pi, pi) = 1 and sim(qj , qj) = 1. We call C the correlation
matrix.

Next we have to detect the eigenpairs that fit. Therefore we detect the maximal element

(iopt, jopt) = argmax
i=1,...,n1, ,j=1,...,n2

(Ci,j)

and say that piopt , qjopt belong to the same mode if Ciopt,jopt ≥ ε. Afterwards these eigenpairs
are removed from C by setting

Ciopt,l := −1 l = 1, . . . , n2

Cl,jopt := −1 l = 1, . . . , n1
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Now we can determine the maximal entry of the modified C and repeat the procedure until all
entries of C are below the threshold ε. The remaining eigenpairs belong to distinct modes. The
remaining eigenpairs of K1

⊥ are those pi where an index j exists such that Ci,j ≥ 0 and the qj
where an index i exists such that Ci,j ≥ 0 are the remaining eigenpairs of K2

⊥.

Example 4.22. The correlation matrix from Figure 6.13 on page 113 where 〈n〉 = 7 · 1019 m−3

and K⊥ = 0.2 is

C =


0.999930 0.327 491 0.434 935 0.354 636
0.357 987 0.573 670 0.797 434 0.999954
0.436 660 0.897 339 0.999933 0.794 394
0.326 205 0.999924 0.894 890 0.570 867

 .

The maximal element of each row and column is printed bold and the eigenpairs are related to
the modes as (p1, q1), (p2, q4), (p3, q3) and (p4, q2).

In a last step, the trajectory of the imaginary part (growth rate) of the eigenvalues is concerned
for each mode. The trajectory of the growth rate has a shape of a hill in the anomalous transport
eigenvalue problem as can be seen in Figure 4.12. Therefore modes are split at valleys of the
growth rate curve.

It is possible to end up with two modes, that are two pieces of one. This causes no essential
problem, because the maximization process will find the same maximum twice. The computa-
tional effort doubles but since this case occurs very seldom, it can be neglected. Algorithm 9
sums up this process.

In section 4.4.1 on page 63 are derived two different similarity measures. The first similarity
measure (4.7) measures the eigenpair and the eigenvalue independently and the second one (4.8)
measures the eigenvectors of the linearized system. Within the mode correlation procedure the
first similarity measure (4.7) works fine and the second measure (4.8) often fails.

One reason is that a change of the wave number changes the shape of the eigenfunction such
that the similarity is of medium-sized value. The eigenvalue comparison of (4.8) is defective
with eigenvalues of large distance (cf. Figure 4.4 on page 65) and causes the wrong decision.

4.5.2 Maximization of the growth rate

In the previous section the arrangement of the eigenpairs from several wave numbers Kj
⊥ into

modes is described. Now, for each of these modes, the wave number Kopt
⊥ where the growth

rate =(ω(Kopt
⊥ )) becomes maximal has to be found. We will do this by a polynomial prediction

correction technique.

In order to find the maximal growth rate of each mode mj with respect to the wave number
K⊥, a subset of the already calculated data (Ki

⊥,=(ω(Ki
⊥))) is interpolated by a polynomial of

low degree (quadratic or cubic) and the position Kpred
⊥ of the polynomials maximum is a cheap

prediction for the desired maximum of the growth rate.

The quadratic interpolation requires at least three supporting points of data. If there is only one
supporting point (K2

⊥, ω2) available, two additional samples are taken at K1
⊥ = K2

⊥−∆K⊥ and
K3
⊥ = K2

⊥+∆K⊥. If there are only two supporting points (Ki
⊥, ωi)i=1,2 a third one is calculated

in the middle of both. Thus we assume that each mode has at least three wave numbers where
the data is already calculated.

With the data available at three wave numbers, quadratic polynomial interpolation is feasible.
If there are more than three points available, cubic interpolation is applied and the four wave
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Algorithm 9 Arranging the eigenpairs in modes

Require: eigenpairs pl,i =
(
ω

Kl
⊥

i , φ
Kl
⊥

i

)
, i = 1, . . . , nl, l = 1, . . . , k

1: for l = 1, . . . , k − 1 do
2: for i = 1, . . . , ni do
3: for j = 1, . . . , ni+1 do
4: Ci,j := dist(pl,i, pl+1,i) // e.g. distance measure (4.8)
5: end for
6: end for
7: while (iopt, jopt) := argmaxi=1,...,nl, j=1,...,nl+1

{Ci,j | Ci,j ≥ εthreshold} do
8: eigenpair pl,iopt and pl+1,jopt belong to the same mode.
9: Ciopt,r := −1 ∀r = 1, . . . , nl+1 // deactivate eigenpair pl+1,iopt for further comparison

10: Cr,jopt := −1 ∀r = 1, . . . , nl // deactivate eigenpair pl,jopt for further comparison
11: end while
12: Il := {i | ∃j : Ci,j ≥ 0} // indices of remaining eigenpairs at K l

⊥
13: Jl := {j | ∃i : Ci,j ≥ 0} // indices of remaining eigenpairs at K l+1

⊥
14: end for
15: Walk through the K⊥ spectra of each mode and split the mode at positions, where the

trajectory of =(ω) has a valley.
16: All eigenpairs, that are not arranged in a mode by the procedure above, are a mode of just

one single point of data.

numbers closest to
K largest
⊥ := argmax

K⊥

=(ω)

are selected to be the supporting points. The position Kpred
⊥ of the polynomials maximum is

calculated and the eigenvalue equation is evaluated at Kpred
⊥ by the multilevel technique where

the eigenpair closest to the eigenpair of K largest
⊥ is chosen.

After the eigenvalue equation is solved at the predicted position Kpred
⊥ , the actual value

=
(
ωact(K

pred
⊥ )

)
is compared with the predicted

=
(
ωpred(K

pred
⊥ )

)
.

The procedure is repeated until the predicted and the actual growth rate are close enough.

There are two possibilities for Kpred
⊥ . Either it is located inside of the range of the supporting

points of the polynomial interpolation (interpolation) or it is outside (extrapolation). In the for-
mer case, the distance of the supporting points taken for the polynomial interpolation decreases
strictly monotonically and thus the accuracy of the prediction increases (cf. Taylor expansion).
In the latter case, the tracking is bounded by the next raster point of K⊥. This limit ensures not
to leave the domain [Kmin

⊥ ,Kmax
⊥ ], which prevents to track the eigenpair a long distance through

the K⊥ interval into a region, where it has a sub dominant growth rate to another eigenpair.
Figure 4.12 illustrates this procedure.

In Figure 4.12 there are two examples of the growth rate maximization by Algorithm 10. In
(a) and (c) the twelve values K⊥ are discretized linearly spaced in [0.1, 0.5]. For each of these
wave numbers the three eigenpairs of the maximal growth rate (asterisks) are calculated of the
anomalous transport eigenvalue equation (3.17). In the next step the eigenpairs of adjacent K⊥
values are correlated by the distance of the eigenpairs (solid lines connecting the asterisks). In
a last step, the maximum (open circle) of each of the trajectories is searched.
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The prediction correction technique by cubic polynomial interpolation finds the maximum at
a precision of 10−6 by (a) 2 (m1), 1 (m2), 0 (m3) and 3 (m4) additional evaluations (dots) of
the eigenvalue equation. In (c) x-marks mark the additionally required data in order to have
three points for the quadratic polynomial interpolation. In (b), (d) the intensity shape of the
eigenfunctions is plotted. The example in the first row is the more physical one.

It can happen that the prediction technique converges monotonous from one side to the max-
imum and the gap between the supporting points of the interpolation on the other side Kafar

⊥
hardly decreases. Then the convergence is accelerated by a so called contraction step: instead
of the predicted Kpred

⊥
Kcontract
⊥ := (Kpred

⊥ +Kafar
⊥ )/2

is taken.

It is mentioned above, that the eigenvalue problem has to be consecutively evaluated at the
predicted wave number. We are interested only in the eigenpair of the current mode. Hence, the
Jacobi-Davidson algorithm is a suitable method. The initial search space therein consists of the
two eigenvectors of the wave numbers that are adjacent to the predicted one. The eigenvector
closest to φj (j like in Algorithm 10) is selected from the subspace (Ritz values). Again we
accelerate the method by the multilevel technique since we start this procedure on a coarser
level of resolution.

Algorithm 10 Maximization of the growth rate of a single mode
Require: Mode m of n ≥ 3 eigenpairs (ωi, φi)i=1,...,n at wave numbers (Ki

⊥)i=1,...,n.
1: repeat
2: j := argmaxi=1,...,n{=(ωi)}
3: if 1 < j < n then
4: k = (j − 1, j, j + 1)
5: else if 1 < j then
6: k = (n− 2, n− 1, n)
7: else
8: k = (1, 2, 3)
9: end if

10: if n ≥ 4 then
11: Add a fourth neighbor to k, if data at k1−1 or k3 +1 is available. If both are available,

choose the argmaxj=k1−1,k3+1{=(ωj)}
12: end if
13: Apply quadratic or cubic interpolation on

(
Kk
⊥,=(ωk)

)
and calculate maximum

(Kpred
⊥ ,= (ωpred)) of polynomial.

14: Evaluate eigenvalue problem at K⊥ = Kpred
⊥ and obtain actual value ωact(K

pred
⊥ ).

15: Add (Kpred
⊥ , ωact) to discrete mode data.

16: until |=(ωact)−=(ωpred)| < tol

4.6 Summary

Many details on the solution of the eigenvalue equation and the maximization issue are discussed
in this chapter. The eigenvalue equation is solved for certain given K⊥ parameter by a direct
solver on a very coarse grid. This rough approximation of the eigenpair is subsequently improved
on finer grids by a Jacobi-Davidson technique, where the Ritz pair closest to the coarse grid
approximation is chosen and the correction equation is solved by the one step approximation.
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In general, the derivatives are approximated by the pseudo spectral method, but they are ap-
proximated by finite differences in the linear system within the correction equation which leads
to a sparse LU decomposition of a periodic band matrix. The stopping criteria of the Jacobi-
Davidson iteration relies on a forward error estimate.

The highly efficient multilevel Jacobi-Davdison technique reduces the computational effort from
one hour to below one second on a resolution of N = 1024 grid points. Thus an evaluation of
the eigenvalue problem on many different the wave numbers K⊥ is manageable.

The eigenpairs obtained are arranged for modes by a correlation strategy that concerns the
eigenvalue and the eigenvector. For each mode the wave number is optimized by the polynomial
interpolation prediction and a correction method which requires further eigenvalue evaluations
until the wave number with the eigenpair of maximal growth rate is found. The subsequent
eigenvalue equations are solve by the multilevel Jacobi-Davidson algorithm.

Up to here, everything is known to calculate the anomalous particle flux Γ⊥ and its normalization
factor φ0. In the next chapter some simulations on the geometric shape of the edge layer are
accomplished and in the chapter thereafter the influence of the anomalous particle flux on
the initial plasma parameters, namely the temperature T , the density n and the pressure p is
considered in the self consistent description.



Chapter 5

Effect of magnetic geometry on the
edge anomalous transport

5.1 Shape of fusion device

In this chapter we analyze the influence of the magnetic geometry on the growth rate of the
perturbations and the impact on the anomalous particle flux. We set the plasma parameters
to values of the Tokamaks MAST and TEXTOR and sweep the parameters of the elongation
and the triangulation throughout a realistic range. The magnetic geometry of the edge surface
for different values of the elongation E and the triangulation D at MAST and TEXTOR is
illustrated in Figure 5.1 and 5.2, respectively.

0 50 100150

−200

−100

0

100

200

R / cm

Z
 / 

cm

(a) D = 0

0 50 100150

−200

−100

0

100

200

R / cm

Z
 / 

cm

(b) D = 0.2

0 50 100150

−200

−100

0

100

200

R / cm

Z
 / 

cm

(c) D = 0.4

Figure 5.1: The magnetic geometry of the edge layer in the MAST is projected onto the poloidal plane.
The parameters are major radius R0 = 80 cm, minor radius r0 = 60 cm, elongation E = 1 (solid line),
E = 2 (dashed line) and E = 3 (dash-dotted line), triangulation D. A common shape corresponds to
E = 2, D = 0.2.

5.2 Elongation and Triangulation

It is commonly known, that the magnetic geometry strongly affects the confinement. A better
confinement leads to a decrease of the anomalous particle flux Γ⊥. One of the effects of elongation
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Figure 5.2: The magnetic geometry of the edge layer in the TEXTOR is projected onto the poloidal
plane. The parameters are major radius R0 = 175 cm, minor radius r0 = 46 cm, elongation E = 1 (solid
line), E = 2 (dashed line) and E = 3 (dash-dotted line), triangulation D. Usual shape is E = 1, D = 0.

is to modify the perpendicular space variation and thereby the effective magnetic shear [18]. On
drift waves we get an enhanced convective damping due to the magnetic shear. At the same
time, however, the mode width is reduced and this tends to reduce the beneficial effect on shear
damping. The net effect can even sometimes be destabilizing [44].

In [2] the effect of a non-circular geometry of magnetic surfaces has already been studied in the
case of the ion temperature gradient instability. There, a different approach is applied. The
drift waves start at a Neumann boundary condition and are damped on their poloidal turns
until the envelope vanishes (Dirichlet). In contrast, the model used here uses periodic boundary
conditions and considers drift Alvén and drift resistive ballooning instabilities.

In the introduction to Tokamak physics, the charge separation of electrons and ions to the top
and the bottom of the vessel is already mentioned. The resulting electric field decreases with
the distance. Thus a high value of E is generally preferred. By triangulation the electric field is
further reduced at the LFS.

In Figure 5.3 (MAST) and 5.4 (TEXTOR) the result of the calculation on the influence of the
magnetic geometry on the growth rate and the anomalous particle flux are shown. The growth
rate and the anomalous particle flux Γ⊥ increase with the elongation but they decrease by the
triangulation. Losses by the anomalous particle flux can be reduced up to a factor of 2.

In Figure 5.3 the result with the MAST parameters is shown. The anomalous particle flux
increases with the elongation E but decreases with the triangulation D. This is true with the
average anomalous particle flux and the maximal anomalous particle flux. Here, the anomalous
flux profile is proportional to |φ̃|2. At a small elongation E the profile is broader and it becomes
narrow with a large elongation E. It is just the opposite with the triangulation D. If the
triangulation is more pronounced, the anomalous particle flux reduces.

In Figure 5.4 the simulation is repeated with the TEXTOR parameters. Qualitatively, it is the
same as with the MAST parameters beside the effect of an increasing anomalous flux average at
a small elongation E. The losses by the anomalous particle flux can be reduced up to a factor
of 4 with the right choice of the magnetic geometry.

These results comply to the experimental observations [48].
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Figure 5.3: The simulation on elongation and triangulation with the MAST parameters (T = 50 eV,
n = 2 · 1019 m−3, B = 0.47 T, ζ = 2, z = 1) (a-f) D = 0 (solid line), D = 0.22 (dashed line) and D = 0.4
(dash-dotted line). K⊥ is chosen to maximize =(ω). The intensity is plotted in (g-i) proportional to
circumference position.



86 Effect of magnetic geometry on the edge anomalous transport

1 2 3

−0.05

−0.04

−0.03

E

ℜ
(ω

)

(a) real part of eigenvalue

1 2 3
0.08

0.1

0.12

0.14

0.16

0.18

E

ℑ
(ω

)

(b) imaginary part of eigenvalue

1 2 3
0.06

0.08

0.1

0.12

0.14

0.16

0.18

E

D
⊥

(c) diffusivity =(ω)3/|ω|2

1 2 3
0.04

0.05

0.06

0.07

0.08

E

K
⊥

(d) K⊥ of maximal growth rate

1 1.5 2 2.5 3

2

3

4

5

6

7

E

<
Γ>

 / 
10

20
 m

−
2  s

−
1

(e) average anomalous particle flux

1 2 3

5

10

15

20

E

Γ m
ax

 / 
10

21
 m

−
2  s

−
1

(f) maximal anomalous particle flux

HFS LFS
0

1

2

3

4

5

 

 
E=3
E=2
E=1

(g) |eφ|2 at D = 0.00

HFS LFS
0

1

2

3

4

5

 

 
E=3
E=2
E=1

(h) |eφ|2 at D = 0.22

HFS LFS
0

1

2

3

 

 
E=3
E=2
E=1

(i) |eφ|2 at D = 0.40

Figure 5.4: The simulation on elongation and triangulation with the TEXTOR parameters (T = 50
eV, n = 3 · 1019 m−3, B = 2.25 T, ζ = 2, z = 1) (a-f) D = 0 (solid line), D = 0.22 (dashed line)
and D = 0.4 (dash-dotted line). K⊥ is chosen to maximize =(ω). The intensity is plotted in (g-i)
proportional to circumference position. (i) the steep curve parts correspond to the acute angles in the
magnetic geometry.



Chapter 6

Self-consistent modeling of the
anomalous transport and the plasma
parameter profiles

In the previous chapters we developed a strategy to solve the anomalous transport eigenvalue
equation (3.12) where the plasma parameter profiles like the temperature T and the density n
are given. The solution of the eigenvalue equation yields the anomalous particle flux Γ⊥. This
flux influences the initial plasma parameters. In the introduction of the physical model the heat
balance equation, the global particle balance and the pressure balance have been introduced as
the means to determine the resulting plasma parameters.

In general, the eigenvalue, the heat balance and the global particle balance equation is one
set of highly nonlinear equations to determine the plasma equilibrium. In order to handle the
nonlinearity numerically, we solve it iteratively. To become precise, we fix the plasma parameters
and solve the eigenvalue equation. Calculate the anomalous particle flux. Fix the anomalous
particle flux and obtain the remaining plasma parameters by the heat balance equation and the
global particle balance. Repeat this procedure until steady state is reached.

We will concern the heat balance equation and the global particle balance equation at first.
Afterward we combine both equations into the profile iteration process.

6.1 Numerical treatment of the heat balance equation

The mathematical form of the heat balance equation (3.23) with the dependencies on the tem-
perature and the poloidal angle stressed is

3T (θ)Γ⊥
(
T (θ)

)
−
δedge 1.94 · 1021

q2R2Zeff

∂

∂θ

(
T 2.5(θ)

Λc

(
n(θ), T (θ)

) ∂T (θ)
∂θ

)
= g(θ)qcore − EiJ

(
Γ⊥(T ), θ

)
,

T (θ) = T (2π + θ), θ ∈ [0, 2π[.
(6.1)

The first step is to fasten the function Γ⊥, such that it becomes independent of the temperature
T . Then all quantities on the right hand side are known values. The Coulomb integral Λc

depends weakly on T and n and thus it can be fixed, too. Beside the term T 2.5 the equation is
a linear second order boundary value problem.
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Let D1, D2 be the matrices that approximate the first and the second derivatives, respectively.
A fully linearized variant of the heat balance equation can be written as the linear system(

3 Diag(Γ⊥)−K Diag

(
D1

T 2.5
j (~θ)

Λc(nj , Tj)

)
D1 −K Diag

(
T 2.5

j (~θ)
Λc(nj , Tj)

)
D2

)
︸ ︷︷ ︸

=:A

T (~θ)

= g(~θ)qcore − EiJj(~θ)︸ ︷︷ ︸
=:b

.

(6.2)

The inversion of Λc is carried out point wise. Tj , nj are known approximations in the jth step—
the profile used calculating Γ⊥ before—and T is the solution of the linear system AT = b. Due
to the method (D1, D2) that approximate the derivatives, A is a periodic band matrix in case
of the finite differences and A is a dense matrix with the pseudo spectral method.

By iterating (6.2) on T or with a multiple shooting technique we can solve the original fully
nonlinear equation (6.1) except for a given Γ⊥. It has been tested. It turned out that the
nonlinear solution with a given Γ⊥ is insufficient because either the temperature growths to
infinity or drops to zero. This depends on the fact if the anomalous particle flux is either to
small or to large.

In the anomalous transport problem, a change of the temperature T results in a change of
the particle flux Γ⊥. The calculation of Γ⊥ occurs in a linearized manner of T , too, because
the temperature and the density profiles are fixed in the eigenvalue solver. Therefore, it is
not feasible to iterate the heat balance equation without adapting Γ⊥. A deeper insigth of
the process—as mentioned above—points out the necessity to update Γ⊥ subsequently and it
turned out that only one iteration of the linearized heat-balance equation is adequate before the
anomalous particle flux is updated.

However, if the eigenpairs hardly change it is possible to skip the recalculation of the eigenvalue
equation for a few times while the last calculated eigenpairs are reused. This has been tested
successfully. The maximal number of iterations until the eigenpairs are updated was limited by
16 and predicted by the change of the transport factor

=(ω)3

|ω|2
|φ|2

of the actual and the previous set of eigenpairs. This strategy reduces the total effort of the
eigenvalue calculation to a tenth. It must be stressed that only the eigenpair is fixed temporarily,
but not the anomalous particle flux (3.22).

6.1.1 Reducing the effort in the symmetric case

The linearized heat-balance equation (6.2) is a linear equation system. In case of the pseudo
spectral derivatives the matrix A is dense. The computational cost to solve the linear system
increases cubically with the dimension N . With finite differences, the sparsity pattern can be
used analogously to the one step approximation (cf. Figure 4.5 on page 66). However, the
heat balance equation needs to be solved to a high accuracy, at least in the final iterations and
therefore we cannot approximate the pseudo spectral matrix by the finite difference matrix as
we did it in the correction equation (2.7) in section 4.4.2 on page 65.

In the Tokamak the top half and the bottom half of the torus is symmetric beside boundary
effects like the position of the limiter and the puffing position of the fueling gas nozzle. The
effects mentioned above determine the influx J of the neutrals. If J is symmetric the whole
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problem is symmetric and the boundary condition of the heat-balance equation (6.1) changes
from periodic boundary condition on [0, 2π[ to Neumann boundary condition on [0,π]. This
yields

3T (θ)Γ⊥(θ)−
δedge 1.94 · 1021

q2R2Zeff

∂

∂θ

(
T 2.5(θ)

Λc

(
n(θ), T (θ)

) ∂T (θ)
∂θ

)
= g(θ)qcore − EiJ

(
Γ⊥(T ), θ

)
, θ∈ [0,π]

∂T

∂θ
(θ) = 0, θ ∈ {0,π}.

(6.3)

Beside the advantage, that the discretized problem decreases to half the dimension, the derivative
matrices D1 and D2 are band matrices with finite differences and so is the whole matrix A. The
entries of the finite difference stencil, that are outside of the matrix are mirrored back inside at
the outer columns. Solving linear systems with band matrices is more efficient than with periodic
band matrices. However, in case of the pseudo spectral derivatives the matrix is still dense, but
of half the size and the matrix D1 and D2 are created using the discrete cosine transformation
[39] analogously to the discrete Fourier transformation in Chapter 4.2.2.

Remark 6.1. In general the advantage of the symmetry is not applicable in the correction
equation (2.7) of the Jacobi-Davidson eigenvalue solver because the real and imaginary part
of the eigenfunctions can be antisymmetric although the intensity is symmetric. The simplest
example of this effect is exp(iθ). However, if we restrict the eigenfunctions to the even functions
we have an eigenvalue equation with Neumann boundary conditions on half of the domain.

6.2 Global particle balance

The global particle balance from (3.25)∫ 2π

0
J
dσ

dθ
dθ =

∫ 2π

0
Γ⊥

dσ

dθ
dθ (6.4)

is the second equation to determine the new pressure and the density profile. We analyze the
global particle balance equation in the case of the global particle conservation and in case of the
gas puff.

6.2.1 Particle conservation

In a scenario with identical inflow and outflow of particles, the number of particles∫ 2π

0
nj
dσ

dθ
dθ = n̂0 :=

∫ 2π

0
n0
dσ

dθ
dθ (6.5)

remains constant with each iteration j. Due to the high parallel conductivity, the pressure
p = n(θ)T (θ) is constant along the poloidal circumference. n̂0 can be obtained from the initial
density distribution n0(θ). In order to calculate the new density profile nj(θ) out of Tj(θ), we
consider the following: For the hitherto unknown pressure it holds pj = nj(θ)Tj(θ). Together
with the particle conservation (6.13) we have

0 =
∫ 2π

0
n0(θ)

dσ

dθ
dθ −

∫ 2π

0
nj(θ)

dσ

dθ
dθ = n̂0 −

∫ 2π

0

pj

Tj(θ)
dσ

dθ
dθ = n̂0 − pj

∫ 2π

0

1
Tj(θ)

dσ

dθ
dθ

⇒ pj = n̂0

(∫ 2π

0

1
Tj(θ)

dσ

dθ
dθ

)−1
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⇒ nj(θ) =
pj

Tj(θ)
=

n̂0

Tj(θ)

(∫ 2π

0

1
Tj(θ)

dσ

dθ
dθ

)−1

(6.6)

We emphasis the fact, that the physical background demands T (θ) > 0. For T close to zero the
density is very high.

6.2.2 Gas puff

In the scenario with an external inflow and outflow of neutrals, for example by puffing in fueling
gas together with particle losses due to pumping out neutralized dust, the number of particles
in the fusion vessel is not necessarily constant. The inflow is known but the outflow strongly
depends on the anomalous transport as the pumps can only pump out neutralized particles
accumulating in the SOL.

The neutrals in the gas flow Φgas enter the edge layer with an angular distribution f . The
particles of the anomalous particle flux Γ⊥ enter the plasma to a specific rate 0 < Rrec < 1. The
influx of neutrals is (cf. section 3.3 on page 44)

J(θ) = RrecΓ⊥(θ) + Φgasf(θ).

The remaining neutrals (1−Rrec)Γ⊥ are pumped out.

In steady state, the number of particles puffed in equals the number of particles that leave the
plasma, thus∫ 2π

0
Γ⊥(θ)

dσ

dθ
dθ =

∫ 2π

0
J(θ)

dσ

dθ
dθ =

∫ 2π

0

(
Γ⊥(θ)Rrec + Φgasf(θ)

)dσ
dθ

dθ.

Again, the high parallel heat conductivity forces a poloidal homogeneous pressure pj = Tj(θ)nj(θ).
The equation (3.22) of the anomalous particle flux contains the pressure factor, thus the new
pressure is

pnew := pj
Φgas

1−Rrec

∫ 2π

0 f(θ)dσ
dθ dθ∫ 2π

0 Γ⊥(θ)dσ
dθ dθ

.

It depends on the ratio of the inflow and the outflow whether the pressure p increases or decreases.
The pressure affects the particle flux linear in the Γ⊥ formula (3.22) and additionally nonlinear
through the eigenvalue equation (3.12).

6.3 The profile iteration

In the previous sections we suggested numerical methods to solve the eigenvalue equation (3.12),
the heat-balance equation (3.23) and the global particle balance (6.4). We summarize this
procedure in the function F :

(Tnew, pnew) = F (T, p),

where T is an angular temperature profile and p the scalar valued pressure. F is used iteratively
to obtain the plasma equilibrium (T, p), which is a fixed point

(T, p) = F (T, p). (6.7)

The naive idea of fixed point iteration

(Tj+1, pj+1) := F (Tj , pj)
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does not work because F is not contractive in general. To make the iterative process contractive
a damping parameter α ∈ ]0, 1] is introduced to define

Fα(Tj , pj) := αF (Tj , pj) + (1− α)(Tj , pj).

and the fixed point iteration is applied to Fα instead of F

(Tj+1, pj+1) = Fα(Tj , pj) (6.8)

Before we discuss the choice of the damping parameter α, the profile iteration is interpreted
from a different point of view.

6.3.1 Non-linear power method

The damped profile iteration (6.3) can be interpreted as a nonlinear power method for the
nonlinear eigenvalue equation

F (T, p) = µ (T, p), (6.9)

where µ is an eigenvalue and F is the nonlinear counterpart of a matrix vector multiplication.
The nonlinear eigenvalue equation is connected to (6.7) in the way, the eigenvalue µ = 1 is
assumed to exist for physical reasons. Unfortunately we cannot analyze this analytically due to
the complexity of F .

The damped fixed point iteration (6.3) is equivalent to

F (T, p)− β(T, p) = µ̃ (T, p), β = −1− α
α

, µ̃ = µ− β.

We assume that F has real eigenvalues only, because an imaginary temperature is physically
nonsens. We consider the scenario where the eigenvalues are µ1 = 1 and µ2 = −1, both have the
modulus 1. A shift β = −1 shifts µ2 on 0 and µ1 on 2 and the equivalent damping parameter is
α = 0.5.

6.3.2 Dynamic damping

The appropriate choice of the damping parameter α is essential for a fast and reliable convergence
procedure and it is the most difficult part in the profile iteration process. For a better readability
the pressure p is skipped in the following.

Let Tj be the temperature profile in the jth iteration. We define

∆Tj := Tj − F (Tj)

and compare the sign
sj(θ) := ∆Tj−1(θ)∆Tj(θ)

If sj(θ) > 0 ∀θ ∈ [0, 2π[ the profile moves monotonically in one direction. Hence, the damping
can be reduced by increasing α:

αj := (1 + cr)αj−1 (release of damping)

where cr ∈ [0, 1], e.g. cr = 0.1. cr is fixed within the whole profile iteration process.

If sj(θ) < 0 ∀θ ∈ [0, 2π[ then the direction of the consecutive profiles is contrary. In order to
avoid oscillations, the damping has to be increased:

αj = caαj−1. (attack of damping)
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where ca ∈ ]0, 1[. An appropriate value is ca = 0.5.

It is necessary to choose cr and ca such that the attack of damping is stronger than the release
of damping, i.e.,

1
1 + cr

> ca.

In the remaining case of an indefinite sign, the damping can be increased carefully to accelerate
the iteration process,

αj := (1 + ci)αj−1, ci � cr.

It is necessary to change the damping parameter α smoothly to avoid setting the limit of the
profile iteration process through the choice of the (αj)j sequence apriori. This is the reason for
the small changes described above.

Additionally, the change of the plasma profiles in the subsequent iterations has to be limited.
We require the trust region [16] condition

max
θ

∣∣∣∣Tj+1(θ)− Tj(θ)
Tj(θ)

∣∣∣∣ < cc, e.g., cc = 0.1 (6.10)

which yields

αj ≤ min
θ

∣∣∣∣ Tj(θ)
F (Tj)(θ)− Tj(θ)

∣∣∣∣ .
We call the strategy of damping dynamic damping. It works fine with temperatures above
a magnitude of 10 eV. At temperatures close to zero care must be taken to the exponential
factor in the penetration depth Ln of the neutral particles. Ln increases exponentially where the
temperature T approaches zero. By the dependence δedge = Ln(θg) of the edge layer width, the
derivative term in the heat balance equation (3.23) is weighted by T 3.5 exp(6.8/T ) (cf. definition
of Ln in Table 3.2 on page 46) where the minimum is at T = 1.94 eV and it grows exponentially
with lower T .

In order to compensate the exponential growth within the dynamic damping, we add the trust
region strategy

|Ln(Tj+1)− Ln(Tj)| < cL.

on the values of Ln. The condition leads to the Lambert W [47] function and is numerically
solved by the Newton method.

Although the output of the linearized heat balance equation (6.2) can consist of poloidal positions
with negative values of the temperature, the trust region strategy ensures the temperature output
of the damped system to stay positive.

Figure 6.1 shows the convergence |Tj+1 − Tj | and the associated damping parameter α of two
profile iterations. The temperature in the example in the upper row is large enough to result in
a moderate Ln. In the example in the lower row, the temperature approaches close to zero and
the damping strategy works hard to lead the iteration into convergence.

In the context of the non-linear power method, the dynamic damping is equivalent to applying
a dynamical shift µ, such that the influence of adjacent eigenvalues is reduced. It has to be
mentioned, that if there are several states of equilibrium in R+ := {x ∈ R, x > 0}, the final
temperature profile depends on the initial one. A general proposition on the number of possible
solutions of an nonlinear equation cannot be given.
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Figure 6.1: The convergence |Tj+1 − Tj | and the damping parameter α of two profile iterations that
triggered MARFE. The MARFE evolves in the iteration ((a,b) j = 6, (c,d) j = 18) where the monotonic
convergence of the profile is interrupted the first time. In (a) the convergence becomes monotonic again
since j = 7 and the damping parameter (b) increases to its upper bound of α = 0.5. In (c) the monotonic
convergence is interrupted consecutively and the dynamic damping strategy (d) reacts with an immediate
damping attack. In the piecewise monotonous range the damping is released carefully.
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6.3.3 Stopping criterion

Some criteria to stop the profile iteration is required. If the iteration process has converged to
a steady state in the jth step it holds

(Tj+k, pj+k) = F (Tj+k, pj+k), ∀k ∈ N.

Definition 6.2. For a given tolerance εT, εp > 0 the profile iteration is called converged if

‖(Tj+1, pj+1)− F (Tj , pj)‖∞ < (εT, εp)

holds. The temperature T has to fulfill the equation at every angular position.

Remark 6.3. The distance ‖(Tj+1, pj+1)− (Tj , pj)‖∞ is a convergence measure if the damping
parameter satisfies α ≈ 1. We have to ensure that a system is not called converged due to over
damping (α� 1).

An alternative to Definition 6.2 is to use relative distances, which increases the weighting at
positions with a small temperature. Another variant is to use the inner product∫ 2π

0 Tj(θ) F (Tj)(θ) dθ√∫ 2π

0 T 2
j (θ) dθ

∫ 2π

0 F 2(Tj)(θ) dθ

which results in the opposite effect, the weighting of the difference at positions of high tempera-
ture is emphasized. Due to the fact that the most interesting effects of F (e.g. MARFE) occur
at low temperatures, the latter one is not recommended in the anomalous transport iteration.

6.3.4 Wave length parameter K⊥

The wave number K⊥ is a parameter in the eigenvalue equation (3.12) and for the anomalous
particle flux Γ⊥. There are at least three possibilities to handle this parameter:

1. A set K⊥ of appropriate wave numbers is chosen. For each K⊥ ∈ K⊥ the eigenvalue
equation (3.12) is solved and the eigenpair of maximal growth rate is selected. Afterwards
the total anomalous particle flux is calculated as a sum over each K⊥ (see section 3.2 on
page 42). The procedure is summarized in Algorithm 11.

2. In each profile iteration, K⊥ is chosen to maximize the growth rate of the mode with the
maximal growth rate. The anomalous particle flux of this single eigenpair or the extremal
eigenpairs of several modes is calculated. This procedure is listed in Algorithm 12.

3. For a single and fixed value of K⊥ the profile iteration is executed. In an outer loop
the values of K⊥ is determined that maximizes the growth rate of the converged profile.
Details are given in Algorithm 13.

Each of the three possibilities has some advantages but also some disadvantages.

(1.) is easy to implement, but the result depends on the set K⊥. The anomalous particle flux
Γ⊥ increases with the number of elements in K⊥. If there are many K⊥ values close to the one
with the maximal growth rate the anomalous particle flux increases much more than if wave
numbers in a region of smaller growth rate are added.

The dependence on the number of K⊥ values is eliminated if the sum is replaced by the integral

Γ2 :=
∫ Kmax

⊥

Kmin
⊥

=(ω(K))3

K2(1 + 2K2γ(K))γ(K))
|φ(K)|2

|ω(K)|2
dK,
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where (ω(K), φ(K)) denotes the eigenpair of the maximal growth rate among all the eigenpairs
with K⊥ = K. Numerically the integral is approximated by a quadrature formula. The depen-
dence on the positions still remains and can be avoided only by taking many values to make the
discrete representation smooth. However, the definition of the starting Kmin

⊥ and the end Kmax
⊥

of the interval is still an unclarity.

(2.) The implementational aspects to determine the wave number K⊥ which maximizes the
growth rate of the dominant mode have been given in section 4.5.2 on page 79 already. The
method works fine with the plasma parameters prescribed, as it is done in the experiment on
the magnetic geometry in Chapter 5 on page 83. However, the profile iteration to determine
the plasma equilibrium self consistently does not converge. Even if the damping parameter α is
close to zero the oscillations are huge.

The reason is as follows. The wave number K⊥ is chosen such that the eigenmode with the
maximal imaginary part becomes maximal. Very tiny changes in the shape of the temperature
profile cause a slightly different K⊥ value to be optimal in the next eigenvalue calculation. This
causes the anomalous particle flux Γ⊥ to change significantly. Thus the next temperature is
strongly different. This problem is so essential, that even a damped Newton iteration on the
system

F (T, p)− (T, p) = 0

does not find a state of plasma equilibrium. The way the damped Newton iteration has been
realized is described in the Appendix C.1 on page 131.

(3.) This method has been developed to avoid the problems of (2.). The fixed wave number
parameter K⊥ within the profile iteration eliminates the problem of (2.) and the dynamic
damping strategy leads to a stable profile iteration. The maximization process in the outer
loop needs to take care of the computational cost of a complete profile iteration. Therefore
a polynomial interpolation technique that predicts the maximal K⊥ value is applied. This is
similar to the one which is used at (2.) in the inner loop. Thus, the overall effort is similar.

The disadvantage of (3.) is the fact that the wave number K⊥ of the maximal growth rate
is different to the wave number of the maximal anomalous transport. This leads to jumps in
the plasma profiles of consecutive self consistent calculations where one parameter, e.g. the
prescribed averaged density or the gas puff intensity, is swept.

Algorithm 11 Averaging the eigenmodes over K⊥
Require: T0, p0

1: for j = 1, 2, . . . do
2: calculate the l most dominant eigenpairs

(
ωk(K), φk(K)

)
k=1,...,l

.

3: calculate Γ⊥ = C
∑l

k=1
=(ωk)3

K2
k(1+2K2

kγ)γ)
|φk|2
|ωk|2

4: calculate the resulting plasma parameters Tcalc, pcalc by the heat balance equation(3.23)
and the global particle balance (3.25).

5: update the plasma profile Tj+1 = αTcalc + (1− α)Tj , pj+1 = αpcalc + (1− α)pj .
6: end for

In Algorithm 13 a set K⊥ of wave numbers to discretize the wave number domain is given. Af-
terwards the local maxima of K⊥ of the data are determined. Each local maximum is calculated
by subsequent profile iterations and the global maximum is determined among the local ones
in a last step (see section 6.3.5). For a number l > 1 of eigenpairs (2.) and (3.) are different
because the most dominant and the second most dominant eigenmode can be taken at different
values of K⊥ in (2.) but only at the same wave number in variant (3.).
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Algorithm 12 Maximize the growth rate of each mode in the inner loop
Require: T0, p0

1: for j = 1, 2, . . . do
2: for K ∈ K do
3: calculate the l most dominant eigenpairs

(
ωk(K), φk(K)

)
k=1,...,l

.
4: end for
5: arrange the eigenpairs into modes mk.
6: for all mode mk do
7: search K⊥ such that the growth rate of the eigenmode becomes maximal.
8: end for
9: calculate Γ⊥ = C

∑
mk

=(ωk)3

K2
k(1+2K2

kγ)γ)
|φk|2
|ωk|2

10: calculate the resulting plasma parameters Tcalc, pcalc by the heat balance equation (3.23)
and the global particle balance (3.25).

11: update the plasma profile Tj+1 = αTcalc + (1− α)Tj , pj+1 = αpcalc + (1− α)pj .
12: end for

Algorithm 13 Maximize the growth rate in the outer loop
Require: T0, p0

1: for K⊥ ∈ K⊥ do
2: for j = 1, 2, . . . do
3: calculate l eigenpairs

(
ωk(K⊥), φk(K⊥)

)
k=1,...,l

such that =(ω(K⊥)) is maximal.

4: calculate Γ⊥ = C 1
K2
⊥(1+2K2

⊥γ)γ)

∑l
k=1

=(ω)3|φk|2
|ωk|2

5: calculate the resulting plasma parameters Tcalc, pcalc by the heat balance equation (3.23)
and the global particle balance (3.25).

6: update the plasma profile Tj+1 = αTcalc + (1− α)Tj , pj+1 = αpcalc + (1− α)pj .
7: end for
8: end for
9: choose the converged profile of that K⊥ where the growth rate is maximal.

6.3.5 Searching for local maxima

We continue the discussion on variant (3.) of the previous section. The equilibrium plasma
profile with the maximal growth rate has to be determined by choosing the optimal wave number
parameter K⊥. This can be written abstractly by a function f : K⊥ → =(ω). The evaluation
of f is the complete profile iteration on F (T, p). Thus every evaluation of f is computational
expensive.

This aim can be formulated abstractly: Find a local minimum of the smooth function f : R→ R
in an interval I = [a, b]. We consider the case where each evaluation of f is computationally
highly expensive. Hence, an algorithm is required that finds the local maximum to a high
accuracy by as few function evaluations as possible.

First at arbitrary positions x1 < x2 ∈ I, yi := f(xi), i = 1, 2 is evaluated. Then polynomial
interpolation is applied to determine a new position xpredict that predicts f to be larger than at
yi. We use quadratic (degree d = 2) or cubic (degree d = 3) polynomials to be able to calculate
their (unique) maximum, thus we use d+1 interpolation points. Starting from the d+2nd node,
we remove an old node. This shall be done wisely. To be more precise, the remaining nodes
shall lie close to the maximum of the already tested values (maxi{yi}) and if possible one node
right and left of this maximum remains.

The theorem of Taylor says, that each smooth function f ∈ C4(I) can be locally expanded by a
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cubic polynomial up to an error that depends on the fourth derivative and the distance of the
interpolation points to the fourth power:

f(x) = f(x0) + f ′(x0)(x− x0) +
1
2
f ′′(x0)(x− x0)2 +

1
6
f ′′′(x0)(x− x0)3 +O

(
(x− x0)4

)
. (6.11)

The derivatives of f are unknown in practical applications. However, from this theorem we can
deduce, that the predicted maximum will converge to the actual maximum, if the distance of the
interpolation nodes tends to zero. This is equivalent to the maximization of modes within the
eigenvalue equation (cf. section 4.5 on page 75) beside the fact, that the domain is not limited,
now.
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Figure 6.2: The K⊥ spectra curve (dots) of a simulation where the wave number K⊥ is fixed within the
profile iteration. The spectra has a maximum at K⊥ = 0.4. On the right side, it is very smooth and can
be approximated very well by a polynomial of a low degree. However, on the left side of the maximum
is a discontinuity.

Some problems arise within the maximization process of the outer loop. For several values
K⊥ ∈ K⊥ the profile iteration is calculated and the growth rate (dots) of the eigenvalue equation
with the final plasma profile is displayed in Figure 6.2. The spectra contains a maximum at
K⊥ = 0.4. For K⊥ > 0.55 the function is smooth and can be well approximated by a polynomial
of low degree. However, at K⊥ = 0.39 there is a discontinuity.

The growth rate curve in Figure 6.2 consists of two different modes. Below K⊥ = 0.4 and above
K⊥ = 0.6 the dominant mode causes the plasma profiles to be rather homogeneous, while the
ballooning mode is triggered with K⊥ ∈ [0.4, 0.6]. The discontinuity at K⊥ arises because the
plasma parameter has to reach some state of inhomogeneity to trigger the ballooning mode to
become dominant. In the region of K⊥ = 0.4 the anomalous transport problem Fα(T, p) = (T, p)
consist of two solutions and the outcome of the profile iteration algorithm depends on the degree
of inhomogeneity that is accomplished within the iterations.

This discontinuity affects the maximization process as the prediction strategy of the polynomial
interpolation approximation will predict the maximum at much smaller K⊥ values without an
interpolation point less than K⊥ = 0.4. The evaluations are taken at K⊥ < 0.4 and subsequent
contraction steps at the left side occur until the leftmost point reaches a wave number where the
ballooning mode is triggered. Then the extrapolation to the left is executed again and so on. To
prevent the searching mechanism to run into an infinite loop, all the old nodes are cached and
the appropriate nodes from the cache are revoked when the extrapolation to the left is predicted.
Then the procedure continues as an interval section mechanism.

This is the basic idea behind Algorithm 14, that is a bit more complicated in detail. For a better
readability it is split into one main routine and two subroutines. The main routine provides an
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estimate of the position of the local maxima by polynomial interpolation. There is either a local
maxima in the range of the interpolation points or a careful extrapolation step is executed.

Once a local maxima is in the interior of the range spanned by the outer interpolation points, the
width of the range has to be contracted subsequently in order to achieve a high local accuracy
of the interpolation (cf. Taylor formula (6.11)). This occurs either automatically when the
proposed maxima oscillates around the actual one or it is explicitly forced by contracting steps.
The contracting steps are taken if one of the outer nodes is strongly separated from the others.
This is illustrated in Figure 6.3.

P

f

x1 x2 x5 x6 x3 xmax xcontract x4

Figure 6.3: The maximum of the function f is to find. The values {(xj , f(xj)), j = 2, . . . , 5} are
interpolated by an polynomial P and the predicted maximum is (x6, f(x6)). The interpolation points of
the next cycle are {(xj , f(xj)), j = 3, . . . , 6}. The three interpolation points xj < xmax converge to xmax

but the only interpolation point greater than xmax remains x4 which is separated. The convergence is
improved by a contracting step that tests xcontract and removes x4.

At a contraction step the old node is removed and the new node becomes the boundary. In
all the other scenarios, the new node is added to the set S and the old nodes which is most
unqualified for the local maximum is removed. The realization is just a case study (Algorithm
16) and not discussed here in detail.

The nodes removed from S are still cached for cases of a non differentiable curve like in Figure
6.2, where sudden extrapolations occur. Then the next removed node which is available in the
cache is added to the polynomial interpolation support and the utmost one on the opposite side
is removed. This reduces the number of additional evaluations of f and avoids the search to run
into an infinite loop.
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Algorithm 14 Detecting local maxima of function f by interpolation
Require: f : R→ R (smooth),
Require: n ∈ {2, 3, 4} interpolation points S1 = {(xi, yi) | yi = f(xi), i = 1, . . . , n}.
Require: upper bound of interpolating polynomial degree d, e.g. d = 3 for cubic polynomials.
1: for k = 1, . . . do
2: n := |Sk|
3: calculate interpolating polynomial Pk of degree n−1, such that Pk(xi) = yi ∀(xi, yi) ∈ Sk.

4: xpredict :=


local maximum of Pk if exists
x1 + (x1 − xn)/(n− 1) y1 > yn // extrapolate to the left
xn + (xn − x1)/(n− 1) y1 < yn // extrapolate to the right

5: if xpredict is local maximum of Pk then
6: xpredict := DecreaseWidthOfNodesDomain(Sk, Pk, 2, xpredict, ypredict) // Algorithm 15
7: end if
8: ypredict := Pk(xpredict) // predicted value of f in xpredict

9: yactual := f(xpredict) // actual value of f in xpredict

10: if |ypredict − yactual| ≤ ε then
11: Stop. The local maximum is (xpredict, yactual).
12: end if
13: if |Sk| > d then
14: Sk+1 := RemoveNodeWisely(Sk ∪ {(xpredict, yactual)}, xpredict) // Algorithm 16
15: else
16: Sk+1 := Sk ∪ {(xpredict, yactual)}.
17: end if
18: end for

Algorithm 15 Decrease width of nodes domain
1: procedure DecreaseWidthOfNodesDomain(set of nodes S, interpolating polynomial P , ra-

tio parameter of node distance c > 0, inner maximum of interpolation polynomial xm, ym)
// e.g. c = 2

2: n := |S|.
3: if xn − xm > c ·max{|xm − xj |, j = 1, . . . , n− 1} then
4: // the right node is separated from the others, move it left the half way to xn−1. This is

called contraction on the right.
5: xpredict := (xn−1 + xn)/2
6: else if xm − x1 > c ·max{|xm − xj |, j = 2, . . . , n} then
7: // the left node is separated from the others, move it right the half way to x2. This is

called contraction on the left.
8: xpredict := (x1 + x2)/2
9: else

10: xpredict := xm // no modification
11: end if
12: return xpredict.
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Algorithm 16 Remove node wisely
1: procedure RemoveNodeWisely(set of nodes S, position of last inserted node xpredict)
2: n := |S|
3: im := argmaxj=1,...,n{yj | (xj , yj) ∈ S}. // the index of largest value yet known
4: ip := argminj=1,...,n{|xj − xpredict| | (xj , yj) ∈ S}. // the index of the last inserted node
5: if xpredict = (xn−1 + xn)/2 then
6: S := S \ {(xn, yn)} // last step was contraction on the right
7: else if xpredict = (x1 + x2)/2 then
8: S := S \ {(x1, y1)} // last step was contraction on the left
9: else if im = ip /* last inserted node is maximal */ then

10: if im < (n+ 1)/2 then
11: S := S \ {(xn, yn)} // the maximal node is on the left side, so remove the right one
12: else if im > (n+ 1)/2 then
13: S := S \ {(x1, y1)} // the maximal node is on the right side, so remove the left one
14: else
15: // the maximal node is at the center
16: if 2xip > x1 + xn then
17: S := S \ {(x1, y1)} // last inserted one is on the right, so remove at the left
18: else
19: S := S \ {(xn, yn)} // last inserted one is on the left, so remove at the right
20: end if
21: end if
22: else if im > (n+ 1)/2 then
23: // maximum is on the right side, so remove at the left
24: if ip = 1 then
25: S := S \ {(x2, y2)} // the last added node still remains
26: else
27: S := S \ {(x1, y1)}
28: end if
29: else if im < (n+ 1)/2 then
30: // maximum is on the left side, so remove at the right
31: if ip = n then
32: S := S \ {(xn−1, yn−1)} // the last added node still remains
33: else
34: S := S \ {(xn, yn)}
35: end if
36: else
37: // maximal node is in the center
38: if ip > im then
39: S := S \ {(x1, y1)}
40: else
41: S := S \ {(xn, yn)}
42: end if
43: end if
44: return S.
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6.4 Effect of plasma shift on density limit

In the Tokamak devices particles inside the scrape-off layer neutralize at the limiter and reenter
into the plasma. At the position of reentry, an increase of the density occurs due to the presence
of additional particles and a drop of the temperature due to the ionization process. This en-
dangers the development of MARFE that worsens the situation even further. An experimental
formula of the density limit was obtained by Greenwald et al. [12]. However TEXTOR experi-
ments [42] revealed the possibility to gain higher densities if the position of the particle reentry
is changed. By slight shifts of the plasma column, the plasma either hits the bumper limiter at
the HFS or the limiter at the LFS. This is illustrated in Figure 6.4.

The charged particles inside the scrape-off layer (SOL) hit the limiter, recombine to neutrals
and reenter the plasma mainly at the same position at a rate Rrec. Therefore the plasma shift
determines whether the neutrals enter the plasma at the HFS or at the LFS. We want to simulate
this experiment and compare the results with experimental observations.

(a) Plasma column shifted to LFS, θg = 0 (b) Plasma column shifted to HFS, θg = π

Figure 6.4: A small shift of the plasma column to the LFS activates the scrape-off at the LFS (a) and
vice versa (b). The charged particles inside the scrape-off layer (SOL) hit the limiter either at the HFS
or at the LFS.

6.4.1 Modeling the physics

The total number of particles that enter the edge layer is

Γtot =
1
2π

∫ 2π

0
Γ⊥(θ)

dσ

dθ
(θ) dθ

and the position of scrape-off is θg. The reentry occurs at the same position with a Gaussian
distribution of the particle positions

fθg :=
2πf̂θg∫ 2π

0 f̂θg
dσ
dθ (θ) dθ

, f̂θg := exp

−
((

(θ − θg + π) mod (2π)
)
− π

)2

δ2g


where δg is the standard deviation or width of the profile (see Figure 6.5).

The influx of neutrals,
J = Γtotfθg ,
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complies to the global particle balance∫ 2π

0
Γ⊥

dσ

dθ
(θ) dθ =

∫ 2π

0
J
dσ

dθ
(θ) dθ,

i.e., the number of particles leaving and entering the plasma is equal.

Using J one step of the linearized heat balance equation (6.2) is solved to obtain the new
temperature Tj+1. The resulting density nj+1 is defined by the poloidal homogeneous pressure

pk = Tk(θ)nk(θ), k ∈ {j, j + 1} (6.12)

and the fact that the total number of particles stays constant∫ 2π

0
nj(θ)

dσ

dθ
(θ) dθ =

∫ 2π

0
nj+1(θ)

dσ

dθ
(θ) dθ (6.13)

without external sources or sinks.

From section 6.2.1 on page 89 the resulting density profile is known to be

nj+1(θ) =
pj+1

Tj+1(θ)
=

1
Tj+1(θ)

(∫ 2π

0
nj(θ)

dσ

dθ
(θ) dθ

)(∫ 2π

0

1
Tj+1(θ)

dσ

dθ
(θ) dθ

)−1

. (6.14)
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Figure 6.5: Distribution of the entry of neutral particles, δg = 0.1.

6.4.2 Results of simulation

As an example, the TEXTOR high density discharges with MARFE have been simulated. The
average density 〈n〉 is prescribed and the resulting profiles are calculated self consistently, one
with the injection of neutrals at the LFS and the other one with injection at the HFS. The result
is displayed in Figures 6.6 and 6.7. The normalization factor is φ0 = 3.96 and the method (1.)
of section 6.3.4 on page 94 is applied with the integral formula approximated by the trapezoidal
rule.

Figure 6.6(a) displays the temperature profile obtained for 〈n〉 ∈ {4, 5, 6} · 1019 m−3. With
〈n〉 = 4 · 1019 m−3 the temperature is slightly above 50 eV and nearly constant. Increasing the
average density to 5 · 1019 m−3 triggers MARFE if the plasma column is shifted outwards to the
LFS (θg = 0) such that the neutrals enter the plasma at the LFS. However, the same density
with the plasma shifted inwards (θg = π) results in an almost constant profile close to 30 eV.
Increasing the density even further to 〈n〉 = 6 · 1019 m−3 triggers MARFE for inward shifted
plasma, too.



6.4 Effect of plasma shift on density limit 103

At the position where the temperature is low, there is a narrow spike of huge density as can be
seen in Figure 6.6(b). The local increase of the density overcomes the density limit and triggers
the MARFE.

The corresponding anomalous particle flux is shown in Figure 6.6(c). An almost constant flux
profile in the range of [1.5, 2] · 1021 m−2s−1 is obtained for 〈n〉 = 4 · 1019 m−3. When the average
density increases the minimum of the anomalous particle flux lowers and the maximum rises.
A ballooning structure evolves. Due to a temperature close to zero at the LFS the ion larmor
radius ρi ∝

√
T decreases and causes the anomalous particle flux to become a narrow local

minimum at this position.

The energy losses due to convection are proportional to the anomalous particle flux which
explains the drop of the temperature and the increase of the density at the LFS. Additionally
there is the poloidal inhomogeneity of the heat flux from plasma core that causes the heating
to be stronger at the LFS than at the HFS. Both effects are contrary and for a quantitative
investigation, the profiles of the losses and the heating from core are displayed in Figure 6.7.
We will come back to this topic at the end of this section.

In the temporal evolution of the self consistent profile iteration with the outward shifted plasma
at 〈n〉 = 5 · 1019 m−3, there is a distinct instant where the temperature drops at the LFS and
the density strongly increases. At this instant the anomalous transport Γ⊥ increases so rapidly,
that the profile iteration would run into negative temperatures without a simultaneous damping
attack by the dynamic damping strategy due to the trust region approach (cf. Figure 6.1(d)).

The lower temperature reduces the anomalous particle flux until the state of equilibrium is
reached. However, the neighborhood of the state of equilibrium is not very stable and the
damping mechanism has ensure to neither over damp the system nor to under damp it. Over
damping will cause the number of profile iterations to increase and under damping leads to
oscillations that can destroy the convergence completely.

The result of our simulation on increasing the average density 〈n〉 is that MARFE is triggered
at lower averaged density 〈n〉 with outward shifted plasma than with the inward shifted plasma
column. This is the converse of what is explored in experiments at TEXTOR [26]. Next, we try
to analyze how the result of our simulation is composed.

The reason for the poloidal temperature profiles in the simulation becomes obvious concerning
the heat balance in Figure 6.7. The Shafranov shift of ∆1 = 0.5 cannot compensate the large
losses at the LFS due to the ballooning structure (ce02) of the anomalous transport. The losses
overcome the heating power from the plasma core and the temperature drops. At the HFS it is
the other way round. The losses from the anomalous particle flux are smaller than the heating
power. Hence, additional energy losses by ionization of an influx of neutrals is less dangerous
for the plasma stability at the HFS than at the LFS.

The simulation has been repeated with a more pronounced Shafranov shift ∆1 = 0.99, but the
result is qualitatively equal to the one with ∆1 = 0.5. The deduction of this analysis points out
the fact, that a better heat flux model is needed in order to obtain realistic results. The simple
low order approximation by the cosine shape is not sufficient. The processes in the plasma core
that lead to inhomogeneous radial heat transport from the core like the temperature gradient
mode have not been considered in our model and might be the reasons for the discrepancy.
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Figure 6.6: The plasma shift simulation with the injection of neutrals at the HFS (θg = π) (solid
line) and the LFS (θg = 0) (broken line) for prescribed average density 〈n〉 ∈ {4, 5, 6} · 1019 m−3. At
〈n〉 = 4·1019 m−3 the plasma profiles of temperature and density are almost constant. At 〈n〉 = 5·1019 m−3

MARFE occurs by the LFS injection, while the profile is still almost constant by the HFS injection.
Increasing the average density to 〈n〉 = 6 · 1019 m−3 triggers MARFE at the HFS injection, as well.
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(a) 〈n〉 = 3 · 1019 m−3
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(b) 〈n〉 = 3 · 1019 m−3
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(c) 〈n〉 = 4 · 1019 m−3
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(d) 〈n〉 = 4 · 1019 m−3
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(e) 〈n〉 = 5 · 1019 m−3
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(f) 〈n〉 = 5 · 1019 m−3

Figure 6.7: The heat balance of the plasma shift simulation with the neutrals entering at the HFS
θg = π (left column) or at the LFS θg = 0 (right column).
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6.4.3 Influence of plasma inhomogeneity on the growth rate of the pertur-
bation envelope

In addition to the heat balance another effect is revealed. To demonstrate it, we evaluate the
eigenvalue equation with three different constellations of the plasma parameter profiles. The
first profile is with pronounced MARFE located at the HFS, the second profile is the same
but shifted by π such that the MARFE is located at the LFS and the third profile consists of
poloidally averaged plasma parameters. These profiles are plotted in Figure 6.8(a).

For each of the three profiles, the eigenvalue equation is solved for several wave numbers and for
the pressure p = 1.7043 · 1021 eV m−3. The K⊥ spectra of the growth rate is plotted in Figure
6.8(b). While the profile of averaged plasma parameters and the profile with the MARFE at the
HFS have a spectra distributed Maxwellian like and the profile with the MARFE at the LFS
results in a strongly localized spectra of twice the maximal growth rate.

The profile of the anomalous particle flux in Figure 6.8(c) is always minimal at the HFS and
maximal at the LFS. A local drop occurs at the position of the lowest temperature due to the
larmor radius ρi in the flux formula ((3.22)) that depends on the square root of the temperature.
The total amount of the anomalous particle flux is maximal if the MARFE is located at the LFS
and minimal if the MARFE is located at the HFS. The constant temperature profile of average
value results in an anomalous particle flux of intermediate size.

These simulations clearly show that the growth rate of the perturbation as well as the resulting
anomalous particle flux strongly depend on the position of the MARFE. Therefore, situations
with very pronounced inhomogeneities require to calculate the eigenvalue equation with inho-
mogeneous profiles rather than averaging them as it has been done previously in [38].

The ballooning instability is invoked much stronger if the MARFE evolves at the LFS than at
the HFS. This explains the outcome of the plasma shift experiment. The local injection of the
neutrals cools down the plasma at the position of injection. If the cooling overcomes the heating
from the plasma core and the parallel heat transport, a local drop occurs. If this drop occurs
at the LFS the ballooning instability is triggered to become strongly dominant and the losses
increase at the LFS and reinforces the drop of temperature until the MARFE is evolved.
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Figure 6.8: Figure (a) shows three temperature profiles. The solid line is MARFE at the HFS and the
dashed line is MARFE at the LFS. Both profiles are identical, but shifted poloidal by π. The third profile
(dash dotted line) is the average value of the other ones. The eigenvalue equation is solved at several
wave numbers with the profiles displayed in (a) where the pressure is p = 1.7043 · 1021 eV m−3. The K⊥
spectra is displayed in (b). The spectra of the profile with MARFE at the HFS and the averaged profile
are very similar Maxwell distributions. The spectra of the profile with MARFE at the LFS has a growth
rate of twice as much and its slope is very steep close to zero and at K⊥ = 0.5. (c) The amount of the
anomalous particle flux Γ⊥. It is smallest at the HFS and largest at the LFS with a local drop at the
position where the MARFE is located. The dashed lined profile has the largest total anomalous particle
flux and the solid lined profile is of the smallest. (d-f) The associated eigenfunctions (ce02) at the wave
number K⊥ with maximal growth rate.
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6.4.4 Results with a more realistic core heat profile

In the previous section one simulation has been illustrated that contradicted the experimental
observation. Throughout the analysis for the specific behavior, the heat balance turned out to be
the reason. The heat flux profile g is g1(θ) = 1+∆1 cos(θ) which is a very rough approximation.
However, the radial heat flow goes with exp(−d2), where d is the distance between the plasma
core and the specific position in the edge layer. On the other hand there is a heat flow parallel to
the magnetic field lines which lowers the inhomogeneity. Additionally, the temperature gradient
modes can cause an inhomogeneous heat flux, too. Since there is no realistic physical model
available so far,

g(θ) = a exp(−d(θ)2/b) + c, a, b, c ∈ R, a, b > 0 (6.15)

is used in this section. A comparison of several heat flux profiles is displayed in Figure 6.9.
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Figure 6.9: Three heat flux distributions from core heating. g1(θ) = 1 + ∆1 cos(θ) is the one proposed
in [38]. g2 and g3 are derived from the approach g = a exp(−d2/b) + c, where d is the distance between
the plasma core and the edge. a, b, c ∈ R with a, b > 0. The poloidal average of g is normalized to one.

The simulation is computed with the heat flux profile g2 again. The plasma profiles are shown in
Figure 6.10 and now the MARFE occurs at smaller average density with inward shifted (θg = π)
plasma column. This complies to the experimental observation. The growth rate is still stronger
with the MARFE at the LFS (Figure 6.12), but now the heat balance (Figure 6.14) compensates
the stronger losses at the LFS. The dependence on the average density can be explored in Figure
6.11. The density limit is slightly higher compared to the experimental values in [38]. This can
be explained by the fact, that the impurity sputtering is not included in the model.

At an average density of 〈n〉 ≤ 4 · 1019 m−3 the eigenfunction ce01 is dominant (cf. Figures 6.12
and 6.13) and at higher average density the ballooning eigenfunction ce02 becomes dominant.

Figure 6.11 shows that the growth rate and the anomalous diffusivity

D⊥ =
=(ω)3

|ω|2
∝ Γ⊥

slightly increase if the MARFE is triggered at the HFS. However, when the MARFE occurs at
the LFS these quantities abruptly increase and make the discharge more unstable. This can be
explained by the drift resistive ballooning instability that is most unstable at the LFS. By the
injection of neutrals at the LFS the ballooning character is enhanced due to the higher density
and, hence, the maximum of the density is greater with inward shifted plasma.

Within this simulation, the pseudo spectral method is used to discretize the derivatives. The
number of the profile iterations, the evaluations of the eigenvalue equation and the average
search space dimension in the multilevel Jacobi-Davidson algorithm are listed in Table 6.1 for
the inward shifted plasma and in Table 6.2 for the outward shifted plasma. The average search
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space dimension is below 3, which is remarkably good and shows that the multilevel Jacobi-
Davidson method is very efficient. The search space dimension reduces at higher resolution,
except for the case of a very pronounced density inhomogeneity where very high frequencies are
present in the eigenfunction.

Figure 4.3 displays the Fourier decomposition of the eigenfunctions that result with the plasma
parameters almost constant (gray) and strongly inhomogeneous (black). The modulus of the
Fourier coefficients αj reduces with increasing |j|. This means that the low frequencies are
most important and it explains the success of the multilevel Jacobi-Davidson strategy. The
eigenfunction of the almost constant plasma parameters mainly consists of frequencies |j| < 100
and the eigenfunction of the strongly inhomogeneous profile requires much higher frequencies.

For almost constant plasma profiles, the final dimension of the search space at a higher level of
resolution is one. The eigenvalue is improved by solving the projected eigenvalue polynomial,
which is a mere cubic polynomial now. Thus the projected eigenvalue problem is equivalent to
calculating the roots of this polynomial. The stopping criterion is fulfilled and the eigenvector
remains the prolonged coarse grid approximation and the effort with the correction equation is
completely avoided.

〈n〉/m−3 3 · 1019 4 · 1019 5 · 1019 6 · 1019 7 · 1019

number of profile iteration 220 282 36 97 549
evaluations of eigenvalue equation 1881 1980 792 1683 3762
average JD iterations at N = 1024 1.00 1.00 1.00 1.00 3.00
average JD iterations at N = 512 1.00 1.00 1.00 1.00 3.00
average JD iterations at N = 256 1.00 1.00 1.00 1.00 3.00
average JD iterations at N = 128 1.00 1.04 1.44 2.00 3.00
average JD iterations at N = 64 1.25 1.81 2.00 2.00 3.00
average JD iterations at N = 32 1.62 2.00 2.00 2.84 3.00
computation time / minutes:seconds 02:42 03:10 01:16 02:55 16:58

Table 6.1: Plasma shift simulation to the HFS (θg = π): The number of the profile iterations, the
evaluations of the eigenvalue equation and the average number of The Jacobi-Davidson (JD) iterations
on each level of resolution in the multilevel approach. The eigenvalue equation is solved on N = 16
grid points by the QZ algorithm. The eigenpair of interest is improved on N = 32, 64, 128, 256, 512 and
N = 1024. The derivatives are approximated by the pseudo spectral method. The precision of the profiles
is |F (Tj)− Tj | < 10−3.

〈n〉/m−3 3 · 1019 4 · 1019 5 · 1019 6 · 1019 7 · 1019

number of profile iteration 236 255 37 25 2000
evaluations of eigenvalue equation 1980 1782 693 495 15635
average JD iterations at N = 1024 1.00 1.00 1.00 1.00 1.00
average JD iterations at N = 512 1.00 1.00 1.00 1.00 1.00
average JD iterations at N = 256 1.00 1.00 1.00 1.00 2.00
average JD iterations at N = 128 1.00 1.00 1.48 2.00 2.00
average JD iterations at N = 64 1.17 1.65 2.00 2.00 2.54
average JD iterations at N = 32 1.51 2.00 2.00 2.50 2.65
computation time / minutes:seconds 02:49 02:49 01:10 00:45 40:26

Table 6.2: Plasma shift simulation to the LFS (θg = 0). See Table 6.1 for further explanations.
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Figure 6.10: Plasma profiles of plasma shift simulation with core heat flux profile g2. Simulated is
inward shifted plasma θg = π (HFS) (solid line) and outward shifted one θg = 0 (LFS) (broken line).
The average densities are 〈n〉 ∈ {5, 7, 8, 10} · 1019 m−3. See also Figure 6.11.
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Figure 6.11: Plasma shift simulation. Dependency of plasma quantities on the average density with
core heat flux profile g2. Simulated is inward shifted plasma θg = π (HFS) (open circles) and outward
shifted one θg = 0 (LFS) (x-marks). In (a) K⊥ := argmaxK⊥

=(ω) is displayed. The green x-marks in
(b) are the maximum of Γ⊥ when a local drop occurs at the LFS due to the temperature decline at this
position. Angular profiles are shown in Figure 6.10.
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Figure 6.12: The eigenpairs of the plasma shift simulation to the HFS are displayed, where the plasma
parameters are taken from the converged profiles. Each row displays the eigenvalues, the K⊥ spectra
and the intensity of the eigenfunction for several eigenpairs at the specific prescribed level of the average
density 〈n〉. Within each row the color specifies the mode and the eigenfunction is taken at the wave
number, where the growth rate is maximal. The kink in the eigenvalue path corresponds to the non-
differential position in the γ factor within the eigenvalue equation. The open circle marks the eigenvalue
that belongs to the smallest wave number and the x-mark marks the eigenvalue at the largest wave
number.
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Figure 6.13: The eigenpairs of the plasma shift simulation to the LFS are displayed, where the plasma
parameters are taken from the converged profiles. Each row displays the eigenvalues, the K⊥ spectra
and the intensity of the eigenfunction for several eigenpairs at the specific prescribed level of the average
density 〈n〉. Within each row the color specifies the mode and the eigenfunction is taken at the wave
number, where the growth rate is maximal. The kink in the eigenvalue path corresponds to the non-
differential position in the γ factor within the eigenvalue equation. The open circle marks the eigenvalue
that belongs to the smallest wave number and the x-mark marks the eigenvalue at the largest wave
number.
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(h) 〈n〉 = 6 · 1019 m−3

Figure 6.14: The heat balance from the plasma shift simulation where the neutrals enter the plasma
at the HFS θg = π (left column) and at the LFS θg = 0 (right column). Due to the heat profile g2 the
heat influx at the LFS is much greater than the convective losses 3Γ⊥T and hence it can withstand the
additional cooling by the ionization EiJ at the same position with the outward shifted plasma column.
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6.5 Gas puffing simulation

Another interesting experiment that we want to simulate is the impact of the position where the
fueling gas is puffed into the plasma. The physical modeling has already been done in section 3.3
on page 44. In experiments [6, 9] the influence of poloidal puffing position on the L-H transition
in the Tokamak MAST has been investigated. The L mode is a state of the low confinement
and the H mode is a state of high confinement. We do not discuss this in detail because a
modeling of the H mode requires to include the radial direction within the calculation, but one
can remember that improving the confinement, reduces the losses (Γ⊥).

Remark 6.4. One comment is necessary: due to the one-dimensional model, the gas puff
simulation describes a toroidal symmetric puffing, which is very difficult to realize in experiments.
In the experiment a nozzle is build into the vessel and therefore the influx of the gas is distributed
by a poloidal and toroidal profile. Nevertheless, the idealized case of a toroidal homogeneous
gas puff has been simulated and the results are discussed below.

We start the gas puff simulation with the puffing position at the LFS and at the HFS. The
normalization factor is φ0 = 0.37. In order to take the impact of the plasma parameters in the
edge layer on the anomalous transport in the deeper regions into account, the heat flux profile
from the plasma core is modeled as

g(θ) =
Γ⊥(θ) + ξ〈Γ⊥〉
〈Γ⊥〉(1 + ξ)

, ξ = 0.08.

The puffing intensity is set to Φgas = 1 · 1019 m−2 s−1 which is slightly below the reference value
Φexp = 1.2 · 1019 m−2 s−1. The self consistent calculation is iterated until |F (Tj , pj)− (Tj , pj)| is
below 10−3. Then the gas puff intensity is increased and the self consistent iteration is continued
with the result of the previous one.

At a low puffing rate Φgas ∈ [1, 2] · 1019 m−2 s−1 the profiles of the temperature and the density
are nearly constant and close to the experimental values in Table 3.1 on page 45. The outflow
Γ⊥ is about ten times larger than the inflow Φgas,

Γ⊥ ≈ 10Φgas.

RRec = 0.9 particles of the anomalous particle flux return back into the plasma, thus,

(1−RRec)Γ⊥ ≈ Φgas

holds. However, the outflow is slightly larger than the inflow which causes the pressure to
decrease slowly with increasing Φgas.

The total heating power from the plasma core is assumed to be constant in our simulation and
therefore the increase of the neutral particle source due to the gas puff and the return current
causes the heat losses to increase and the temperature to decrease.

At a gas puffing intensity Φgas = 2.4 · 1019 m−2 s−1 with the puffing position at the LFS or
Φgas = 2.6 · 1019 m−2 s−1 with the puffing position at the HFS, the plasma profiles become more
and more inhomogeneous, where the minimum of the temperature is at the position of the gas
puff. The maximum of the density is at the puffing position, too. In both cases, the anomalous
particle flux is pronounced at the LFS due to the shape of |φ|2 (cf. Figure 4.6 on page 67).
When the plasma profiles become inhomogeneous, the particle flux at the LFS increases even
stronger (cf. Figure 6.15(b)).

This causes the density and the anomalous particle flux to grow rapidly and to reinforce the
cooling. Thus MARFE evolves.
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It is obvious that the strongly localized neutral particle source of the gas puff enhances the
heat loss at the specific position. However, a tiny modification of the heat flux profile from the
plasma core where ξ = 0.05 triggers the MARFE always at the HFS and ξ = 0.1 triggers the
MARFE at the LFS independently of the puffing position.

The plasma profiles stay almost constant until the parallel heat conduction κ‖ drops at a tem-
perature around T = 12 eV. There, the losses from the heat convection 3TΓ⊥ and the ionization
EiJ of the current cease to be balanced by the parallel heat conduction and thus a local drop
of the temperature occurs. Hence, the heat conduction becomes even lower and the process
reinforces itself. Additionally the ionization energy Ei (3.24) increases at a low temperature
and reinforces the process even further. At a temperature below 2 eV δedge = Ln rises exponen-
tially and increases the weight of the derivative term in (3.23) such that the temperature stays
positive.

Figure 6.18 displays the losses due to convection and ionization in comparison to the heating
from the plasma core. The puffing at the LFS adds additional loss at the position of strongest
loss due to the heat convection 3TΓ⊥. However, puffing at the HFS adds the loss at the opposite
position. Thus the density limit is reached earlier at the LFS puffing such that the HFS position
is preferable for a safe discharge.

The heat flux profiles that are used in the plasma shift experiment in the previous section, do not
produce realistic results. One reason is the anomalous transport Γ⊥ that is strongly localized at
the LFS with the MAST parameters. Another very interesting aspect are the growth rates of the
eigenvalues. In the simulation of MAST there is always one eigenpair of growth rate =(ω) ≈ 0.4
and the second largest growth rate is a hundred times smaller. In contrast, in the TEXTOR
simulation there are many eigenpairs of similar growth rate as can be seen in Figure 6.12 on
page 112 and Figure 6.13 on page 113.

The shear of the radial electric field induced by the toroidal plasma rotation from [9] has been
considered by the modification

=(ω)← =(ω)

1 +
(

Ω
=(ω)

)α , Ω =
ρi

2Ln

3 +
0.17(

1 + r0
R0

cos(θg)
)2

 , α ∈ [2, 3] (6.16)

of the growth rate. It is an estimate to describe the turbulence suppression by the radial electric
shear. It turns out that

1

1 +
(

Ω
=(ω)

)α ∈

{
[0.98, 0.99], θg = 0 puffing at the LFS
[0.93, 0.98], θg = π puffing at the HFS

so that the simulation changes as follows. The growth rate modification reduces the growth rate
and so the anomalous diffusivity especially with the puffing position at the HFS. The growth rate
is reduced mainly at angular positions of high temperatures due to the Ln factor that becomes
large at lower temperatures. The average anomalous transport 〈Γ⊥〉 reduces by a factor of
0.0012. However, the anomalous transport increases by a factor 1.1 at the position θ where the
temperature is minimal. The wave number of the maximal growth rate reduces by a factor of
0.1. Additionally the average density increases by a factor of 1.3. In our simulation, MARFE is
triggered at a lower puffing rate with the modification (6.16) applied.
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Figure 6.15: The gas puff simulation with MAST parameters. The puff position is σgas = π (HFS)
(solid line) and σgas = 0 (LFS) (dashed line). The heating power from the plasma core is qcore =
2.13 ·1023 eV m−2 s−1 and the width of the gas puff distribution is δg = 0.1. In (a) K⊥ := argmaxK⊥

=(ω)
is displayed. In (b) the green line is the maximum of Γ⊥ when a local drop occurs at the LFS due to a
temperature drop at this position.



118 Self-consistent modeling of the anomalous transport

0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

K⊥

ℑ
(ω

)

(a) Φgas = 1.0 · 1020 m−2 s−1

0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

K⊥

ℑ
(ω

)

(b) Φgas = 2.0 · 1020 m−2 s−1

0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

K⊥

ℑ
(ω

)

(c) Φgas = 2.5 · 1020 m−2 s−1

0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

K⊥

ℑ
(ω

)

(d) Φgas = 2.6 · 1020 m−2 s−1

Figure 6.16: K⊥ spectra of the gas puff simulation at the HFS θg = π (open circles) and the LFS θg = 0
(x-marks). The kink corresponds to the non differentiable point in the γ factor of the eigenvalue equation
(3.12).
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Figure 6.17: The plasma profiles of the gas puff simulation. The puffing position is at θg = π (HFS)
(solid line) and at θg = 0 (LFS) (broken line). The horizontal axis is scaled proportional to the circum-
ference of the edge layer. The kinks at the top and bottom corner of the magnetic triangle correspond
to the short range of steep gradients between the HFS and the LFS in the temperature profiles.
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(f) Φgas = 2.5 · 1020 m−2 s−1
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(g) Φgas = 2.6 · 1020 m−2 s−1

Figure 6.18: The heat balance of the gas puff simulation. The gas puff position is at HFS θg = π (left
column) and LFS θg = 0 (right column). The horizontal axis is scaled proportional to the circumference
of the edge layer.



Chapter 7

Summary and perspectives

In the present work we developed algorithms to simulate the one-dimensional anomalous trans-
port model of a Tokamak. Our main contribution was an efficient numerical method for solving
the eigenvalue equation of the electric potential perturbation envelope. The new multilevel
Jacobi-Davidson method can handle strongly inhomogeneous plasma parameters as well as dif-
ferent magnetic geometries.

The algorithm strongly relies on the physical properties of the eigenfunction of interest, namely
the spatial smoothness. This motivates to start with a coarse grid approximation, which is
then interpolated to a finer grid. The eigenvalue problem on the finer grid is then solved with
a Jacobi-Davidson method with initial search space consisting of the interpolated coarse grid
approximation, so that only few iterations are required. This process is repeated until the
finest grid is reached. In order to improve the efficiency of this multilevel iteration, a number
of intermediate steps haven been optimized for our particular application. For instance, we
proposed a strategy for the selection of grid points and we investigated the efficient solution of
the so-called correction equation. A major difficulty is to follow the correct Ritz pair during the
iteration in the case that the eigenvalue with largest imaginary part is not well separated from
the others. We proposed a mechanism based on distances between subspaces.

Our new multilevel Jacobi-Davidson algorithm is able to compute the desired eigenpair within
one second up to a resolution of 1024 grid points, while the standard solver (QZ) takes about
one hour. This allows to investigate the dependence of the anomalous transport of certain
parameters such as the magnetic geometries of MAST and of TEXTOR. The simulation results
are in good agreement with experimental observations.

We further studied self consistent modeling. The heat balance and the global particle balance
equations are considered in order to calculate the impact of the anomalous particle flux on the
initial plasma parameters. The system of nonlinear equations is solved iteratively, requiring the
solution of a large number of eigenvalue problems. This makes an efficient eigenvalue solver
indispensable. We proposed to use fixed point iteration with a well adopted damping strategy
coupled with a trust region approach.

Moreover, we simulated the effect of the plasma shift for a prescribed average density. The
simulation produced MARFE when the density limit was reached. These simulations showed
that this process depends on the position of the injection of neutrals. Close to the density limit
the ballooning structure is very pronounced so that the use of averaged plasma parameters is
not justified. In addition, we verified that the heat flux distribution from the core has a huge
impact on the qualitative result. The simple approximation of the poloidal heat flux distribution
due to the Shafranov shift turns out to be insufficient for a realistic simulation. Future models
should include instabilities in the plasma core, such as the ion gradient mode that cause the



122 Summary and perspectives

anomalous heat flux into the plasma edge zone.

The gas puff simulation in the Tokamak MAST reveals the experimentally verified fact that
the puffing at the HFS allows a higher puffing intensity before the MARFE is triggered. The
L-H transition itself cannot be analyzed using a radially averaged direction. Therefore we plan
to consider a two-dimensional model in the future. The idea of the multilevel Jacobi-Davidson
method is still applicable but the solution of the correction equation needs special attention.

Finally we would like to mention that our new numerical scheme will also be useful in other
applications, where only few eigenpairs corresponding to smooth eigenfunctions are required.



Appendix A

Proof of Theorem 4.9

We prepare the proof of the Theorem 4.9 on page 52 with the following three lemmas. This is
possibly not new, but it has not be found in the literature.

Lemma A.1. For b ∈ N it holds
b∑

i=1

b∏
j=1
j 6=i

j2

j2 − i2
= 1

Proof. We define the supporting points

xk := k2, k = 1, . . . , b

and the Lagrange basis polynomials

li(x) :=
b∏

j=1
j 6=i

x− xj

xi − xj
.

Due to Theorem 4.7 on page 52

q0(x) :=
b∑

i=1

1li(x)

interpolates the function f(x) := 1 exactly, i.e., q0(0) = 1 and we have

1 = f(0) = q0(0) =
b∑

i=1

1li(0) =
b∑

i=1

b∏
j=1
j 6=i

0− xj

xi − xj
=

b∑
i=1

b∏
j=1
j 6=i

j2

j2 − i2
.

Lemma A.2. For b, k ∈ N, k < b it holds

b∑
i=1

i2k
b∏

j=1
j 6=i

j2

j2 − i2
= 0

Proof. We define the supporting points

xk := k, k = 1, . . . , b
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and the Lagrange basis for even polynomials of degree 2b− 2 is

li(x) :=
b∏

j=1
j 6=i

x2 − x2
j

x2
i − x2

j

.

The polynomial

qk(x) :=
b∑

i=1

x2k
i li(x)

interpolates the function f(x) := x2k exact for k ≤ b− 1 and thus

0 = f(0) = qk(0) =
b∑

i=1

x2k
i li(0) =

b∑
i=1

x2k
i

b∏
j=1
j 6=i

0− x2
j

x2
i − x2

j

=
b∑

i=1

i2k
b∏

j=1
j 6=i

j2

j2 − i2

Lemma A.3. For b, k ∈ N, k < b holds

b∑
i=1

1
i2

 b∏
j=1
j 6=i

j2

j2 − i2
− 1

 = 0

Proof. We proof this theorem by induction. For b = 1 the product is empty and thus one. Hence
the sum is zero. For b = 2 we have

1
1

(
4

4− 1
− 1
)

+
1
4

(
1

1− 4
− 1
)

=
1
3
− 1

3
= 0.

We assume that the proposition is true for a fixed b ∈ N

b∑
i=1

1
i2

=
b∑

i=1

1
i2

b∏
j=1
j 6=i

j2

j2 − i2
(A.1)
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and show the induction step to b+ 1:

b+1∑
i=1

1
i2

b+1∏
j=1
j 6=i

j2

j2 − i2
− 1

 =
b∑

i=1

1
i2

b+1∏
j=1
j 6=i

j2

j2 − i2
−

b∑
i=1

1
i2

+
1

(b+ 1)2

 b∏
j=1

j2

j2 − (b+ 1)2
− 1


(A.1)
=

b∑
i=1

1
i2

(
(b+ 1)2

(b+ 1)2 − i2
− 1
) b∏

j=1
j 6=i

j2

j2 − i2
+

1
(b+ 1)2

 b∏
j=1

j2

j2 − (b+ 1)2
− 1



=
b∑

i=1

1
(b+ 1)2 − i2

b∏
j=1
j 6=i

j2

j2 − i2
+

1
(b+ 1)2

 b∏
j=1

j2

j2 − (b+ 1)2
− 1



=
1

(b+ 1)2

 b∑
i=1

b+1∏
j=1
j 6=i

j2

j2 − i2
+

b∏
j=1

j2

j2 − (b+ 1)2
− 1



=
1

(b+ 1)2

b+1∑
i=1

b+1∏
j=1
j 6=i

j2

j2 − i2
− 1

 Lemma A.1= 0

We are now able to prove Theorem 4.9 on page 52.

Proof. of Theorem 4.9.

The Lagrangian polynomial is calculated as

p(x) =
b∑

i=−b

fiLi(x).

The derivative of p in x0 = 0 requires the derivative L′i(0):

L′0(0) = 0 (A.2)

and for i 6= 0 holds

L′i(0) =
1

2hi

b∏
j=1
|j|6=|i|

j2

j2 − i2
, L′i(0) = −L′−i(0). (A.3)

The Taylor expansion of fi in x0 = 0 is

fi := f(xi) =
m∑

k=0

f (k)(0)
ikhk

k!
+O(hm+1). (A.4)

Now, the first derivative of p is written with the Lagrangian polynomials and the Taylor expan-
sion

p′(0) =
b∑

i=−b

fiL
′
i(0) =

b∑
i=−b

(
m∑

k=0

f (k)(0)
ikhk

k!
+O(hm+1)

)
L′i(0)

=
m∑

k=0

b∑
i=−b

f (k)(0)
ikhk

k!
L′i(0) +O(hm).
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Due to L′i(0) = −L′−i(0) it simplifies to

p′(0) =
m∑

k=0

f (k)(0)

(
0khk

k!
L′0(0) +

b∑
i=1

(
ik − (−i)k

)
hk

k!
L′i(0)

)
+O(hm)

=
m∑

k=0

f (k)(0)
b∑

i=1

(
ik − (−i)k

)
hk

k!
L′i(0) +O(hm).

For k even, the numerator is zero. For k odd and with (A.2), (A.3) it holds

p′(0) =
m∑

k=0

f (k)(0)
b∑

i=1

(
ik − (−i)k

)
hk

k!
1

2hi

b∏
j=1
j 6=i

j2

j2 − i2
+O(hm)

=
m∑

k=0

f (k)(0)
hk−1

k!

b∑
i=1

ik−1
b∏

j=1
j 6=i

j2

j2 − i2

︸ ︷︷ ︸
=:tk

+O(hm).

In case of k = 1 it holds

t1 =
b∑

i=1

b∏
j=1
j 6=i

j2

j2 − i2
Lemma A.1= 1.

For 1 < k < b it holds

t2k+1 =
b∑

i=1

i2k
b∏

j=1
j 6=i

j2

j2 − i2
Lemma A.2= 0.

For k = 2b+ 1 it holds

t2b+1 =
b∑

i=1

i2b
b∏

j=1
j 6=i

j2

j2 − i2
6= 0

in general.
⇒ p′(0) = f ′(0) +O(h2b)

Now, the accuracy of the second derivative is proofed analogous:

L′′0(0) =
1
h2

b∑
k=−b
k 6=0

−1
k

b∑
l=−b
l 6=k
l 6=0

−1
l

=
1
h2

b∑
k=−b
k 6=0

1
k

b∑
l=−b
l 6=k
l 6=0

1
l

=
2
h2

b∑
k=1

1
k

b∑
l=−b
l 6=k
l 6=0

1
l

=
2
h2

b∑
k=1

−1
k2

+
b∑

l=1

1
kl
− 1
kl

= − 2
h2

b∑
k=1

1
k2

(A.5)

For i 6= 0 holds

L′′i (0) =
1
h2

2
i

b∑
l=−b
l 6=i
l 6=0

1
i− l

b∏
j=−b
j 6=i
j 6=l
j 6=0

j

j − i
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The sum is split into the part of negative and positive l and l is replaced by −l for the negative
part:

L′′i (0) =
1
h2

2
i


b∑

l=1
l 6=i

1
i− l

b∏
j=−b
j 6=i
j 6=l
j 6=0

j

j − i
+

b∑
l=1
l 6=−i

1
i+ l

b∏
j=−b
j 6=i

j 6=−l
j 6=0

j

j − i


.

After a short calculation

L′′i (0) =
1
h2

2
i


b∑

l=1
l 6=i

1
i− l

−l
−l − i

b∏
j=−b
j 6=i
|j|6=|l|
j 6=0

j

j − i
+

b∑
l=1
l 6=−i

1
i+ l

l

l − i

b∏
j=−b
j 6=i
|j|6=|l|
j 6=0

j

j − i


all summands except the one for l = −i vanish:

L′′i (0) =
1
h2

2
i


b∑

l=1
l 6=|i|

(
−l

l2 − i2
+

l

l2 − i2

)
︸ ︷︷ ︸

=0

b∏
j=−b
j 6=i
|j|6=|l|
j 6=0

j

j − i
+

1
i+ i

b∏
j=−b
|j|6=|i|
j 6=0

j

j − i


=

1
h2

1
i2

b∏
j=−b
|j|6=|i|
j 6=0

j

j − i
=

1
h2

1
i2

b∏
j=1
|j|6=|i|

j

j − i
j

j + i
=

1
h2

1
i2

b∏
j=1
|j|6=|i|

j2

j2 − i2

(A.6)

and it holds L′′i (0) = L′′−i(0).

In the expression of the second derivative of the Lagrangian polynomial p the values fi are
replaced by its Taylor expansion in x0 = 0 (A.4):

p′′(0) =
b∑

i=−b

fiL
′′
i (0) =

b∑
i=−b

(
m∑

k=0

f (k)(0)
ikhk

k!
+O(hm+1)

)
L′′i (0)

=
m∑

k=0

b∑
i=−b

f (k)(0)
ikhk

k!
L′′i (0) +O(hm−1).

Due tp L′′i (0) = L′′−i(0) the expression simplifies to

p′′(0) =
m∑

k=0

hk

k!
f (k)(0)

0kL′′0(0) +
b∑

i=1

(
ik + (−i)k

)
L′′i (0)︸ ︷︷ ︸

=:sk

+O(hm−1). (A.7)

To proof the proposition, it must be shown that sk = 0 for k = 0, 1, 3, 4, . . . , 2b+ 1 and s2 = 2
h2 ,

and s2b+2 6= 0.
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If k ∈ N is odd sk = 0 holds obviously.

If k = 0 (A.5), (A) and (A.7) offer

s0 = 1L′′0(0) + 2
b∑

i=1

L′′i (0)

=
2
h2

 b∑
i=1

1
i2

−1 +
b∏

j=1
j 6=i

j2

j2 − i2


 Lemma A.3= 0.

For k ∈ N and even it holds

sk = 2
b∑

i=1

ikL′′i (0) = 2
b∑

i=1

ik
1
h2

1
i2

b∏
j=1
j 6=i

j2

j2 − i2
=

2
h2

b∑
i=1

ik−2
b∏

j=1
j 6=i

j2

j2 − i2
.

In case of k = 2 with Lemma A.1 on page 123 it holds

s2 =
2
h2

b∑
i=1

b∏
j=1
j 6=i

j2

j2 − i2
=

2
h2
.

If 2 ≤ k ≤ b with Lemma A.2 it holds

s2k =
2
h2

b∑
i=1

i2k−2
b∏

j=1
j 6=i

j2

j2 − i2
= 0.

In case of k = 2b+ 2 it holds

s2b+2 =
2
h2

b∑
i=1

i2b
b∏

j=1
j 6=i

j2

j2 − i2
6= 0

in general.



Appendix B

Poloidal circumference with
triangulated plasma

Several times the average of a quantity f̂(σ) along the poloidal circumference is required. The
integral over the circumference with the elongation E and the triangulationD can be transformed
into an integral over the poloidal angle θ as follows.∫ 2π

0
f̂(σ) dσ =

∫ 2π

0
f̂
(
σ(θ)

)dσ
dθ

(θ) dθ =
∫ 2π

0
f(θ)

dσ

dθ
(θ) dθ

The arc length element is

r
dσ

dθ
=

√(
∂R

∂θ

)2

+
(
∂Z

∂θ

)2

where
R = R0 + r cos(θ) +Dr cos(2θ)
Z = rE sin(θ)− rED sin(2θ).

The integral can be handled numerically by a quadrature formula, e.g., the trapezoidal rule.
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Appendix C

The Newton method for the self
consistent calculation

Again, we denote the plasma profile iteration that calculates the anomalous particle flux and
one step of the linearized heat balance equation (6.2) and the global particle balance (6.4) by
F (T, p). We skip the pressure argument for better readability.

C.1 Inverse non-linear power method

Let
F (T ) = λT (C.1)

denote the non-linear eigenvalue problem. The solution of physical interest is an eigenpair with
eigenvalue λ = 1. A Shift −1 is applied on the non-linear eigenvalue problem (C.1):

F̂ (T ) := F (T )− T. (C.2)

The aim is to find T̃ , such that F̂ (T̃ ) = 0. In case of linear F̂ this is done by the power method
applied on the inverse matrix. Here, in case of the non-linear equation Newtons method is
applied:

Ti+1 := Ti −
(
DF̂ (Ti)

)−1
F̂ (Ti). (C.3)

The Jacobian DF̂ (Ti) cannot be calculated analytically. Therefore a numerical approximation
is required. For any direction ψj and a step size h > 0 a second order approximation is

DF̂ (Ti)ψj =
∂F̂

∂ψj
(Ti)

=
F̂ (Ti + hψj)− F̂ (Ti − hψj)

2h‖ψj‖2
+O(h2)

=
F (Ti + hψj)− Ti − hψj − F (Ti − hψj) + Ti − hψj

2h‖ψj‖2
+O(h2)

=
F (Ti + hψj)− F (Ti − hψj)

2h‖ψj‖2
− ψj

‖ψj‖2
+O(h2).

(C.4)

Let N ∈ N be the number of grid points. The calculation of F̂ (Ti) requires 2N evaluations of F .
In order to keep small the computational effort, we assume the following: within a small change
of Ti to Ti ± hφj the K⊥ value of maximal growth rate does not change and the eigenpair is
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similar, as well. Therefore the eigenpair (ωi, φ̃i), that produces Ti is improved by the Jacobi-
Davidson algorithmat T = Ti ± hψj to obtain Γ⊥(Ti ± hψj). “improved” means to choose the
initial search space in the Jacobi-Davidson algorithm as Vinitial = φ̃i. At last the heat balance
equation is solved for T = Ti ± hψj and Γ⊥ = Γ⊥(Ti ± hψj) to find F (Ti ± hψj).

C.1.1 Symmetry

If the position of the gas puff position and the limiter is symmetric to the mid plane of the Toka-
mak vessel, the plasma parameter profiles are symmetric with respect to θ = 0 and θ = π. Thus
the calculation can be restricted to [0, π] and the obtained values are mirrored onto ]π, 2π[ after-
wards. The eigenvalue problem of the potential perturbation itself cannot be reduced in general,
because there are point symmetric complex eigenvectors where the intensity is symmetric (think
of cos(θ) + i sin(θ)).

Let N ∈ 2N be the number of grid points of a symmetric periodic grid G such that θ0 = 0 and
θN/2 = π. Further, we define the series of vectors (ej)j=0,...,N−1, ej(θi) = δj,i ∀θi ∈ G. The
symmetric vectors are combined to

êj := ej + eN−j , j = 1, . . . ,
N

2
− 1, êj := ej , j = 0,

N

2
.

The effort to calculate the Jacobian of F̂ is reduced to the half:

DF̂ (Ti)êj =
∂F̂

∂êj
(Ti) =

F (Ti + hêj)− F (Ti − hêj)
2h‖êj‖2

− êj
‖êj‖2

+O(h2), j = 0, . . . ,
N

2
. (C.5)

DF̂ (Ti) ∈ R(N/2+1)×(N/2+1)

Now, we can calculate the first N/2 + 1 components of the Newton direction t

DF̂ (Ti)t0,...,N/2 =
(
F̂ (Ti)

)
0,...,N/2

and mirror it afterwards
tN/2+1,...,N−1 := tN/2−1,...,1

to obtain the full vector.

The finite difference derivative changes the value of Ti at one grid point or in the symmetric case
at two grid points. Another possibility is to change the amplitude of the Fourier frequencies.
Here, it does not give the spectral precision, but the advance is a smoother temperature profile
compared to the profile with one value modified in one grid point. The disadvantage is the
additional computational effort, when the support of the direction function êj broadens in (C.5)
though to êj = exp(ij~θ), which is the set of the basis functions. In the standard symmetric case
the Fourier frequencies are the cosine.

C.2 Comparing both methods

Two solvers for non-linear eigenvalue problem have been introduced, the power method and
the inverse power method. The convergence is much better with the latter one. However the
computational cost in calculating the Jacobian is enormous. The move of the temperature
profile between two iterations is much smaller with the inverse power method, i.e., the norm of
the Jacobian is mostly 10 or above.
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C.3 Accelerating non-linear power method by a non-linear full
approximation scheme multigrid approach

In order to accelerate the Newton procedure, the idea arises to apply the full approximation
scheme (FAS) [28] of the non-linear multigrid technique on (C.2). On coarser grids the calcu-
lation of the Jacobian DF requires less evaluations of F . To be more precise, the number of
evaluations of F is proportional to the number of grid points. Additionally the computational
effort to evaluate F reduces at least linear by the dimension of the discrete space. Thus the
computational effort to calculate DF reduces quadratically with the number of grid points.

For a given profile T the defect d is defined as

d := F̂ (T ) := F (T )− T

In order to achieve F̂ (T opt) = 0, a correction t is desired such that F̂ (T + t) = 0. This correction
t can be calculated by the Newton iteration which requires the expensive calculation of the
Jacobian DF̂ (T ). However, a correction of the lower frequencies of T can be calculated on a
coarser grid. The details are summed up in algorithm 17.

Algorithm 17 Non-linear full approximation scheme multigrid approach
Require: Profile T 0 on grid G0 of c2m grid points.
Require: Number of pre- and post smoothing Newton cycles: ν1, ν2.
1: // The upper index (k) always denotes the grid level of a grid of c2m−k points.
2: apply ν1 Newton cycles on F̂ 0(T 0 + t0ν1

) = 0.
3: calculate defect d0

0 := F̂ 0(T 0 + t0ν1
).

4: while ‖d0
0‖ > ε do

5: // multigrid pre smoothing
6: for k = 1, . . . ,m do
7: restrict defect dk−1

k−1 → dk
k−1 and (T k−1 + tk−1

ν1
)→ T k to coarser grid Gk of c2m−k points.

8: apply ν1 Newton cycles on F̂ k(T k + tkν1
) + F̂ k(T k) = dk

k−1 .
9: end for

10: tmcoarse = 0 // there is no correction of coarser grids
11: // multigrid post smoothing
12: for k = m, . . . , 1 do
13: apply ν2 Newton cycles on F̂ k(T k + tkν1

+ tmcoarse + tkν2
) + F̂ k(T k) = dk

k−1 .
14: tk−1

coarse := prolong(tkν1
+ tkcoarse + tkν2

)
15: end for
16: apply ν2 Newton cycles on F̂ 0(T 0 + t0ν1

+ t0coarse + t0ν2
) = 0.

17: update T 0 := T 0 + t0ν1
+ t0coarse + t0ν2

.
18: calculate defect d0

0 := F̂ 0(T 0 + t0ν1
).

19: end while
20: T opt := T 0.

On a coarse grid of half the size of grid points, the effort to calculate one profile is halved.
Furthermore the number of required profiles to calculate the Jacobian DF̂ is half the number,
too. In particular, the total effort is almost reduced to a quarter. On the next coarser grid of
fourth the number of grid points, the effort is reduced to the sixteenth part and so on.

A practical approved choice for the number of Newton cycles are ν1 = 1 before the coarse grid
correction and ν2 = 2 after the coarse grid correction. On the full resolution only one Newton
cycle is calculated before coarse grid approximations are repeated. The restriction is realized by
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the weighted average of the point itself and the two neighbors. The prolongation is implemented
by linear or shape preserving cubic hermite interpolation [8].

The acceleration by the coarse grid correction is enormous. The number of cycles on the full
resolution of N = 512 is reduced from hundred to less than ten. However the number of
evaluations of F due to the Jacobian is much larger than the number gained by the fixed point
iteration with a problem adopted damping strategy as it is deduced in section 6.3.2 on page 91.
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[9] T. Fülöp, P. Helander and P. Catto: Effect of Poloidal Density Variation of Neutral Atoms
on the Tokamak Edge, Physical Review Letters vol. 89, no. 22 (2002)

[10] L. Gerard, G. Sleijpen and H. van der Vorst: A Jacobi-Davidson Iteration Method for Linear
Eigenvalue Problems, SIAM J. Matrix Anal. Appl. vol. 17, no. 2 (1996) pp. 401–425

[11] G. Golub and C. van Loan: Matrix Computations, The Johns Hopkins Univerity Press,
third edition, ISBN 0-8018-5413-8 (1996) pp. 76–77

[12] M. Greenwald, Plasma Phys. Nucl. Fusion, 44, R27 (2002)

[13] N. Higham: Accuracy and Stability of Numerical Algorithms, Manchester Institute for
Mathematical Sciences, ISSN 1749-9097 (2002)

[14] A. Horn and C. Johnson, Topics in Matrix Analysis, Chapter 1, Cambridge University
Press, ISBN 0-521-46713-6 (1991)

[15] R. Janev, D. Post, W. Langer et al., J. Nucl. Mater, vol. 121, no. 10 (1984)

[16] F. Jarre, J. Stoer: Optimierung. Springer (2004) ISBN 3-540-43575-1

[17] C. Johnson: Functional Characterizations of the Field of Values and the Convex Hull of
the Spectrum, Proceedings of the American Mathematical Society, vol. 61, no. 2 (1976) pp.
201–204.



148 BIBLIOGRAPHY

[18] D. Jua, Y. Yu and T. Fowler, Physics of Fluids 34 3216 (1992)

[19] S. Klose: Untersuchung der Driftinstabilität an der rotierenden magnetisierten Plasmasäule
des PSI-1 im Falle eines Plamahohlprofils und großer endlicher Ionengyroradieneffekte,
Dissertation, Humboldt-Univerity Berlin, Germany (1969)

[20] A.V. Knyazev and K. Neymeyr: Efficient solution of summetric eigenvalue problems using
multigrid preconditioners in the locally optimal block conjugate gradient method, Elec. Trans.
on Numeric. Anal. vol. 15 (2003) pp. 38–55

[21] C. Li and L. Rodman: Numerical range of matrix polynomials, SIAM J. Matrix anal. Appl.
vol. 15, no. 4 (1994) pp. 1256–1265

[22] J. D. Lawson: Some criteria for a Power Producing Thermonuclear Reactor, Proceedings
of the Physical Society B, vol. 70 (1957) p. 6.

[23] X. Loozen: Modeling of Plasma Response to Magnetic Field Perturbations from the
Dynamic Ergodic Divertor (DED) and Comparison with Experiment, Berichte des
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Kronecker delta, 49

L mode, 115
L-H transition, 115
Lagrangian polynomial, 50
Landau, 39
larmor frequency, 7
larmor radius, 7
laser, 6
last closed magnetic surface (LCMS), 11
Lawson criterion, 6
LCMS, 11
least squares method, 68
LFS, 11
limiter, 11
linearization, 20
Lorentz force, 6
low field side (LFS), 11

magnetic, 6
magnetic bottle, 7
magnetic fusion, 5
magnetic mirror, 7
magnetic moment, 8
major radius, 8
MARFE, 17, 101
mass deficit, 3
Mathieu equation, 41, 58, 60
matrix polynomial, 19
Maxwell temperature distribution, 6
mean free path, 16
mode, 75
multi faceted asymmetric radiation from the

edge, 17
multigrid, 133
multilevel Jacobi-Davidson algorithm, 62

neoclassical transport, 7
null space, 21

ohmic heating, 10
one step approximation, 32
order, 52

periodic band matrix, 51
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periodic sinc function, 54
perturbation term, 35
plasma, 5
polarization drift velocity, 9
polarization force, 9
poloidal cut, 11
polynomial eigenvalue problem, 19
power method, 23
prolongation, 134
pseudo inverse, 32

quantum tunneling, 6
quasi neutral, 5
quasi-null vectors, 72

range, 21
Rayleigh quotient, 21
Rayleigh quotient iteration, 25
regular, 19
residual, 30
resonant, 15
restart, 31
restriction, 133
Ritz pair, 29
Ritz value, 29
Ritz vector, 29

safety factor q, 10
sampling theorem, 49
scrape-off layer (SOL), 11
Shafranov shift, 7
shift, 24
singular, 19
singular value decomposition, 58
SOL, 11
sparse, 29
sparsity pattern, 29
standard eigenvalue problem, 19
stellarator, 9
stencil, 51
strong nuclear force, 4
SVD, 58

thermonuclear fusion, 5, 6
Tokamak, 9
torus, 8
triple product, 6
trust region, 92
turbulent, 15

universal drift wave, 15
unstable, 15
unstable mode, 15

upper Hessenberg, 26

Wilkinson shift, 26
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