

# Numerical solution of the wave equation with acoustic boundary conditions

David Hipp joint work with Marlis Hochbruck



www.kit.edu

#### Introduction





#### example

- design of concert hall
- model walls as tiny springs
- springs react to excess pressure

#### Introduction





#### example

- design of concert hall
- model walls as tiny springs
- springs react to excess pressure

#### setting

- bounded domain  $\Omega \subset \mathbb{R}^2$
- boundary  $\Gamma = \partial \Omega$
- u velocity potential
- $\delta$  infinitesimal normal displ. of  $\Gamma$
- Γ not moving!

# Acoustic boundary conditions

introduced in [Beale, Rosencrans '74] •  $u: [0, T] \times \Omega \rightarrow \mathbb{R}$ 

•  $\delta \colon [\mathbf{0}, T] \times \Gamma \to \mathbb{R}$ 

m

wave equation with acoustic b.c.

u and  $\delta$  are governed by:

| $\partial_t^2 u = c^2 \Delta u$                                | in $\Omega$ |
|----------------------------------------------------------------|-------------|
| $\partial_t^2 \delta + k\delta + d\delta = -\rho \partial_t u$ | on $\Gamma$ |
| $\partial_t \delta = \partial_\nu u$                           | on $\Gamma$ |
|                                                                |             |

+ initial conditions for  $u, \partial_t u, \delta, \partial_t \delta$ 



# Acoustic boundary conditions

introduced in [Beale, Rosencrans '74] •  $u: [0, T] \times \Omega \rightarrow \mathbb{R}$ 

•  $\delta \colon [0, T] \times \Gamma \to \mathbb{R}$ 

 $m\partial_t^2 \delta +$ 

wave equation with acoustic b.c.

u and  $\delta$  are governed by:

$$\partial_t^2 u = c^2 \Delta u$$
 in  $\Omega$   
 $k\delta + d\delta = -\rho \partial_t u$  on  $\Gamma$ 

$$\partial_t \delta = \partial_\nu u$$
 on  $\Gamma$ 

+ initial conditions for  $u, \partial_t u, \delta, \partial_t \delta$ 

 related to Wentzell boundary condition [Gal, Goldstein, Goldstein '03]



# Acoustic boundary conditions

introduced in [Beale, Rosencrans '74] •  $u: [0, T] \times \Omega \rightarrow \mathbb{R}$ 

•  $\delta \colon [\mathbf{0}, T] \times \Gamma \to \mathbb{R}$ 

wave equation with acoustic b.c.

u and  $\delta$  are governed by:

$$\partial_t^2 u = c^2 \Delta u \qquad \text{in } \Omega$$

$$n\partial_t^2 \delta + k\delta + d\delta = -\rho \partial_t u$$
 on  $\Gamma$   
 $\partial_t \delta = \partial_t u$  on  $\Gamma$ 

+ initial conditions for  $u, \partial_t u, \delta, \partial_t \delta$ 

- related to Wentzell boundary condition [Gal, Goldstein, Goldstein '03]
- dynamic boundary condition





energies of *u* 

kinetic 
$$KE(u) = \frac{1}{2} \int_{\Omega} \frac{1}{c^2} |\partial_t u|^2 dx$$
  
potential  $PE(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx$ 



energies of *u* 

kinetic 
$$KE(u) = \frac{1}{2} \int_{\Omega} \frac{1}{c^2} |\partial_t u|^2 dx + \frac{1}{2} \int_{\Gamma} \lambda |\partial_t u|^2 d\sigma$$
  
potential  $PE(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{1}{2} \int_{\Gamma} k |u|^2 d\sigma$ 



energies of *u* 

kinetic 
$$KE(u) = \frac{1}{2} \int_{\Omega} \frac{1}{c^2} |\partial_t u|^2 dx + \frac{1}{2} \int_{\Gamma} \lambda |\partial_t u|^2 d\sigma$$
  
potential  $PE(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{1}{2} \int_{\Gamma} k |u|^2 d\sigma$ 

• minimizing action functional  $S(u) = \int_0^T KE(u) - PE(u) dt$ 

$$\partial_t^2 u = c^2 \Delta u$$
 in  $\Omega$ 

$$\partial_{\nu} u = -\lambda \partial_t^2 u - ku$$
 on  $\Gamma$ 



energies of *u* 

kinetic 
$$KE(u) = \frac{1}{2} \int_{\Omega} \frac{1}{c^2} |\partial_t u|^2 dx + \frac{1}{2} \int_{\Gamma} \lambda |\partial_t u|^2 d\sigma$$
  
potential  $PE(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{1}{2} \int_{\Gamma} k |u|^2 d\sigma$ 

• minimizing action functional  $S(u) = \int_0^T KE(u) - PE(u) dt$ 

$$\partial_t^2 u = c^2 \Delta u$$
 in  $\Omega$ 

$$\partial_{\nu} u = -\lambda \partial_t^2 u - ku$$
 on  $\Gamma$ 

kinetic boundary conditions



energies of *u* 

kinetic 
$$KE(u) = \frac{1}{2} \int_{\Omega} \frac{1}{c^2} |\partial_t u|^2 dx + \frac{1}{2} \int_{\Gamma} \lambda |\partial_t u|^2 d\sigma$$
  
potential  $PE(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{1}{2} \int_{\Gamma} k |u|^2 d\sigma$ 

• minimizing action functional  $S(u) = \int_0^T KE(u) - PE(u) dt$ 

$$\partial_t^2 u = c^2 \Delta u$$
 in  $\Omega$ 

$$\partial_{\nu} u = -\lambda \partial_t^2 u - ku$$
 on  $\Gamma$ 

- kinetic boundary conditions
- Robin and Neumann b.c. are contained

<sup>[</sup>G.R. Goldstein '06] for details



energies of *u* 

kinetic 
$$KE(u) = \frac{1}{2} \int_{\Omega} \frac{1}{c^2} |\partial_t u|^2 dx + \frac{1}{2} \int_{\Gamma} \lambda |\partial_t u|^2 d\sigma$$
  
potential  $PE(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{1}{2} \int_{\Gamma} k |u|^2 d\sigma$ 

• minimizing action functional  $S(u) = \int_0^T KE(u) - PE(u) dt$ 

$$\partial_t^2 u = c^2 \Delta u$$
 in  $\Omega$ 

$$\partial_{\nu} u = -\lambda \partial_t^2 u - ku$$
 on  $\Gamma$ 

- kinetic boundary conditions
- Robin and Neumann b.c. are contained
- dynamic boundary condition for  $\lambda > 0$

# Comparison of different boundary conditions



| Neumann                | Robin                      | kinetic                               | acoustic                                        |
|------------------------|----------------------------|---------------------------------------|-------------------------------------------------|
| $\partial_{\nu} u = 0$ | $\partial_{\nu} u + u = 0$ | $\partial_t^2 u + ku = -\partial_v u$ | $\partial_t^2 \delta + k\delta = -\partial_t u$ |
|                        |                            |                                       |                                                 |
|                        |                            |                                       |                                                 |
|                        |                            |                                       |                                                 |
|                        |                            |                                       |                                                 |
|                        |                            |                                       |                                                 |
|                        |                            |                                       |                                                 |
|                        |                            |                                       |                                                 |

# Analysis I



well-posedness of wave equation

$$\partial_t^2 u = \Delta u \quad \text{in } \Omega \quad + \quad \text{i.c.}$$

with Neumann b.c.

with acoustic b.c.

$$\partial_{\nu} u = 0$$
 on  $\Gamma$ 

 $\partial_t^2 \delta + k \delta = -\partial_t u$  on  $\Gamma$ 

# Analysis I



well-posedness of wave equation

$$\partial_t^2 u = \Delta u \quad \text{in } \Omega \quad + \quad \text{i.c.}$$

with Neumann b.c.

with acoustic b.c.

 $\partial_t^2 \delta + k \delta = -\partial_t u$  on  $\Gamma$ 

 $\partial_{\nu} u = 0$  on  $\Gamma$ 

as 1st order evolution equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{u}(t) = \mathbf{A}\vec{u}(t) \qquad + \quad \text{i.c.}$$

-

with operator

$$A\vec{u} = \begin{bmatrix} 0 & I \\ \Delta & 0 \end{bmatrix} \begin{bmatrix} u \\ u_t \end{bmatrix} \qquad A\vec{u} = \begin{bmatrix} u_t \\ \Delta u \\ \delta_t \\ -\gamma(u_t) - k\delta \end{bmatrix} \qquad \vec{u} = \begin{bmatrix} u \\ u_t \\ \delta \\ \delta_t \end{bmatrix}$$

# Analysis II



(energy) Hilbert space

$$H = H_c^1(\Omega) \times L^2(\Omega) \times L^2(\Gamma) \times L^2(\Gamma) = \mathcal{H}$$
$$\|\vec{u}\|_H^2 = \frac{1}{2} \int_{\Omega} |\nabla u|^2 + |u_t|^2 \, \mathrm{d}x + \frac{1}{2} \int_{\Gamma} k \left|\delta\right|^2 + \left|\delta_t\right|^2 \, \mathrm{d}\sigma = \|\vec{u}\|_{\mathcal{H}}^2$$

# Analysis II



(energy) Hilbert space

$$H = H_c^1(\Omega) \times L^2(\Omega) \times L^2(\Gamma) \times L^2(\Gamma) = \mathcal{H}$$
$$\|\vec{u}\|_H^2 = \frac{1}{2} \int_{\Omega} |\nabla u|^2 + |u_t|^2 dx + \frac{1}{2} \int_{\Gamma} k |\delta|^2 + |\delta_t|^2 d\sigma = \|\vec{u}\|_{\mathcal{H}}^2$$

domain of operator

$$\mathcal{D}(\mathcal{A}) = \{ \vec{u} \in \mathcal{H} \mid \Delta u \in L^2(\Omega), \ u_t \in \mathcal{H}^1(\Omega), \ \partial_{\nu} u = 0 \text{ on } \Gamma \}$$
$$\mathcal{D}(\mathcal{A}) = \{ \vec{u} \in \mathcal{H} \mid \Delta u \in L^2(\Omega), \ u_t \in \mathcal{H}^1(\Omega), \ \partial_{\nu} u = \delta_t \text{ on } \Gamma \}$$

# Analysis II



(energy) Hilbert space

$$H = H_c^1(\Omega) \times L^2(\Omega) \times L^2(\Gamma) \times L^2(\Gamma) = \mathcal{H}$$
$$\|\vec{u}\|_H^2 = \frac{1}{2} \int_{\Omega} |\nabla u|^2 + |u_t|^2 dx + \frac{1}{2} \int_{\Gamma} k |\delta|^2 + |\delta_t|^2 d\sigma = \|\vec{u}\|_{\mathcal{H}}^2$$

domain of operator

$$\mathcal{D}(\mathcal{A}) = \{ \vec{u} \in \mathcal{H} \mid \Delta u \in L^2(\Omega), \ u_t \in \mathcal{H}^1(\Omega), \ \partial_{\nu} u = 0 \text{ on } \Gamma \}$$
$$\mathcal{D}(\mathcal{A}) = \{ \vec{u} \in \mathcal{H} \mid \Delta u \in L^2(\Omega), \ u_t \in \mathcal{H}^1(\Omega), \ \partial_{\nu} u = \delta_t \text{ on } \Gamma \}$$

Theorem ([Beale '76, Thm. 2.1])

lacksquare  ${\cal A}$  closed, densely defined and skewadjoint in  ${\cal H}$ 

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{u}(t) = \mathcal{A}\vec{u}(t), \qquad \vec{u}(0) = \vec{u}_0 \in \mathcal{D}(\mathcal{A})$$

is well-posed and  $\|\vec{u}\|_{\mathcal{H}} = const.$ 



#### method of lines

- 1. spatial discretization
- 2. numerical time integration of stiff ODE



#### method of lines

- 1. spatial discretization
- 2. numerical time integration of stiff ODE
- difficulty: discretization of  $H^1_c(\Omega) = H^1(\Omega) / \mathbb{R}$



#### method of lines

- 1. spatial discretization
- 2. numerical time integration of stiff ODE
- difficulty: discretization of  $H_c^1(\Omega) = H^1(\Omega) / \mathbb{R}$
- solution: choose  $\mathcal{H} = H^1(\Omega) \times L^2(\Omega) \times L^2(\Gamma) \times L^2(\Gamma)$

$$\|\vec{u}\|_{\mathcal{H}}^2 = \int_{\Omega} |u|^2 \, \mathrm{d}x + \|\vec{u}\|_{\mathcal{H}_c}^2$$

# Karlsruhe Ins

#### method of lines

- 1. spatial discretization
- 2. numerical time integration of stiff ODE
- difficulty: discretization of H<sup>1</sup><sub>c</sub>(Ω) = H<sup>1</sup>(Ω)/ℝ
   solution: choose H = H<sup>1</sup>(Ω) × L<sup>2</sup>(Ω) × L<sup>2</sup>(Γ) × L<sup>2</sup>(Γ)

$$\|\vec{u}\|_{\mathcal{H}}^{2} = \int_{\Omega} |u|^{2} \mathrm{d}x + \|\vec{u}\|_{\mathcal{H}_{c}}^{2}$$

•  $\mathcal{A} \colon \mathcal{H} \supset \mathcal{D}(\mathcal{A}) \to \mathcal{H}$  not skewadjoint, but

$$\left(\vec{v} \left| \left( \mathcal{A} - \frac{1}{2} I \right) \vec{v} \right)_{\mathcal{H}} \le 0, \qquad \vec{v} \in \mathcal{D}(\mathcal{A})$$

#### Corollary

 $\mathcal{A}\colon \mathcal{D}(\mathcal{A})\to \mathcal{H}$  is the infinitesimal generator of a  $C_0\text{-semigroup}$ 



Green's formula: 
$$\Delta u \in L^2(\Omega)$$
,  $v_t \in H^1(\Omega)$ ,  $\partial_v u = \delta_t$   
 $\left(\vec{v} \mid \mathcal{A}\vec{u}\right)_{\mathcal{H}} = (v \mid u_t)_{1,\Omega} + (v_t \mid \Delta u)_{0,\Omega}$   
 $+ (k\eta \mid \delta_t)_{0,\Gamma} - (\eta_t \mid \gamma u_t + k\delta)_{0,\Gamma}$ 



Green's formula: 
$$\Delta u \in L^2(\Omega), v_t \in H^1(\Omega), \partial_v u = \delta_t$$
  
 $(\vec{v} \mid \mathcal{A}\vec{u})_{\mathcal{H}} = (v \mid u_t)_{1,\Omega} + (v_t \mid \Delta u)_{0,\Omega}$   
 $+ (k\eta \mid \delta_t)_{0,\Gamma} - (\eta_t \mid \gamma u_t + k\delta)_{0,\Gamma}$   
 $= (v \mid u_t)_{1,\Omega} - (\nabla v_t \mid \nabla u)_{0,\Omega} + (\gamma v_t \mid \delta_t)_{0,\Gamma}$   
 $+ (k\eta \mid \delta_t)_{0,\Gamma} - (\eta_t \mid \gamma u_t + k\delta)_{0,\Gamma} =: \mathbf{s}(\vec{v}, \vec{u})$ 



Green's formula: 
$$\Delta u \in L^2(\Omega)$$
,  $v_t \in H^1(\Omega)$ ,  $\partial_v u = \delta_t$   
 $(\vec{v} \mid \mathcal{A}\vec{u})_{\mathcal{H}} = (v \mid u_t)_{1,\Omega} + (v_t \mid \Delta u)_{0,\Omega}$   
 $+ (k\eta \mid \delta_t)_{0,\Gamma} - (\eta_t \mid \gamma u_t + k\delta)_{0,\Gamma}$   
 $= (v \mid u_t)_{1,\Omega} - (\nabla v_t \mid \nabla u)_{0,\Omega} + (\gamma v_t \mid \delta_t)_{0,\Gamma}$   
 $+ (k\eta \mid \delta_t)_{0,\Gamma} - (\eta_t \mid \gamma u_t + k\delta)_{0,\Gamma}$  =:  $s(\vec{v}, \vec{u})$ 

•  $s: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$  bilinear form on

$$\mathcal{V} = \mathcal{H}^{1}(\Omega) \times \mathcal{H}^{1}(\Omega) \times \mathcal{L}^{2}(\Gamma) \times \mathcal{L}^{2}(\Gamma)$$



Green's formula: 
$$\Delta u \in L^2(\Omega)$$
,  $v_t \in H^1(\Omega)$ ,  $\partial_v u = \delta_t$   
 $(\vec{v} \mid \mathcal{A}\vec{u})_{\mathcal{H}} = (v \mid u_t)_{1,\Omega} + (v_t \mid \Delta u)_{0,\Omega}$   
 $+ (k\eta \mid \delta_t)_{0,\Gamma} - (\eta_t \mid \gamma u_t + k\delta)_{0,\Gamma}$   
 $= (v \mid u_t)_{1,\Omega} - (\nabla v_t \mid \nabla u)_{0,\Omega} + (\gamma v_t \mid \delta_t)_{0,\Gamma}$   
 $+ (k\eta \mid \delta_t)_{0,\Gamma} - (\eta_t \mid \gamma u_t + k\delta)_{0,\Gamma}$  =:  $s(\vec{v}, \vec{u})$ 

•  $s \colon \mathcal{V} \times \mathcal{V} \to \mathbb{R}$  bilinear form on

 $\mathcal{V} = H^1(\Omega) \times H^1(\Omega) \times L^2(\Gamma) \times L^2(\Gamma) \supset \mathcal{D}(\mathcal{A})$ 



Green's formula: 
$$\Delta u \in L^2(\Omega)$$
,  $v_t \in H^1(\Omega)$ ,  $\partial_v u = \delta_t$   
 $(\vec{v} \mid \mathcal{A}\vec{u})_{\mathcal{H}} = (v \mid u_t)_{1,\Omega} + (v_t \mid \Delta u)_{0,\Omega}$   
 $+ (k\eta \mid \delta_t)_{0,\Gamma} - (\eta_t \mid \gamma u_t + k\delta)_{0,\Gamma}$   
 $= (v \mid u_t)_{1,\Omega} - (\nabla v_t \mid \nabla u)_{0,\Omega} + (\gamma v_t \mid \delta_t)_{0,\Gamma}$   
 $+ (k\eta \mid \delta_t)_{0,\Gamma} - (\eta_t \mid \gamma u_t + k\delta)_{0,\Gamma}$  =:  $s(\vec{v}, \vec{u})$ 

s: V × V → ℝ bilinear form on V = H<sup>1</sup>(Ω) × H<sup>1</sup>(Ω) × L<sup>2</sup>(Γ) × L<sup>2</sup>(Γ) ⊃ D(A)
s(v, v) ≤ <sup>1</sup>/<sub>2</sub> ||v||<sup>2</sup><sub>H</sub> for all v ∈ V



Green's formula: 
$$\Delta u \in L^2(\Omega)$$
,  $v_t \in H^1(\Omega)$ ,  $\partial_v u = \delta_t$   
 $(\vec{v} \mid \mathcal{A}\vec{u})_{\mathcal{H}} = (v \mid u_t)_{1,\Omega} + (v_t \mid \Delta u)_{0,\Omega}$   
 $+ (k\eta \mid \delta_t)_{0,\Gamma} - (\eta_t \mid \gamma u_t + k\delta)_{0,\Gamma}$   
 $= (v \mid u_t)_{1,\Omega} - (\nabla v_t \mid \nabla u)_{0,\Omega} + (\gamma v_t \mid \delta_t)_{0,\Gamma}$   
 $+ (k\eta \mid \delta_t)_{0,\Gamma} - (\eta_t \mid \gamma u_t + k\delta)_{0,\Gamma} =: s(\vec{v}, \vec{u})$ 

•  $s: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$  bilinear form on  $\mathcal{V} = H^1(\Omega) \times H^1(\Omega) \times L^2(\Gamma) \times L^2(\Gamma) \supset \mathcal{D}(\mathcal{A})$ 

• 
$$s(\vec{v},\vec{v}) \leq \frac{1}{2} \|\vec{v}\|_{\mathcal{H}}^2$$
 for all  $\vec{v} \in \mathcal{V}$ 

#### variational problem

$$\left(\vec{v} \mid \frac{\mathrm{d}}{\mathrm{d}t}\vec{u}(t)\right)_{\mathcal{H}} = \boldsymbol{s}\left(\vec{v}, \vec{u}(t)\right) \qquad \forall \vec{v} \in \mathcal{V} \qquad + \text{ i.c.}$$



•  $V_h^{\Omega} \subset H^1(\Omega)$  and  $V_h^{\Gamma} \subset L^2(\Gamma)$  finite dim. subspaces with  $\gamma(V_h^{\Omega}) \subset V_h^{\Gamma}$ 



•  $V_h^{\Omega} \subset H^1(\Omega)$  and  $V_h^{\Gamma} \subset L^2(\Gamma)$  finite dim. subspaces with  $\gamma(V_h^{\Omega}) \subset V_h^{\Gamma}$ • construction

$$\mathcal{V}_h = \mathcal{V}_h^{\Omega} \times \mathcal{V}_h^{\Omega} \times \mathcal{V}_h^{\Gamma} \times \mathcal{V}_h^{\Gamma} \subset \mathcal{V}_h^{\Gamma}$$



•  $V_h^{\Omega} \subset H^1(\Omega)$  and  $V_h^{\Gamma} \subset L^2(\Gamma)$  finite dim. subspaces with  $\gamma(V_h^{\Omega}) \subset V_h^{\Gamma}$ • construction

$$\mathcal{V}_{h} = \mathcal{V}_{h}^{\Omega} \times \mathcal{V}_{h}^{\Omega} \times \mathcal{V}_{h}^{\Gamma} \times \mathcal{V}_{h}^{\Gamma} \subset \mathcal{V}_{h}$$

#### semidiscrete problem

find  $\vec{u}_h \colon [0, T] \to \mathcal{V}_h$  s.t.

$$\left(\vec{v}_h \mid \frac{\mathrm{d}}{\mathrm{d}t} \vec{u}_h(t)\right)_{\mathcal{H}} = \boldsymbol{s}\left(\vec{v}_h, \vec{u}_h(t)\right) \qquad \forall \vec{v}_h \in \mathcal{V}_h \qquad + \text{ i.c. in } \mathcal{V}_h$$



V<sub>h</sub><sup>Ω</sup> ⊂ H<sup>1</sup>(Ω) and V<sub>h</sub><sup>Γ</sup> ⊂ L<sup>2</sup>(Γ) finite dim. subspaces with γ(V<sub>h</sub><sup>Ω</sup>) ⊂ V<sub>h</sub><sup>Γ</sup>
 construction

$$\mathcal{V}_{h} = \mathcal{V}_{h}^{\Omega} imes \mathcal{V}_{h}^{\Omega} imes \mathcal{V}_{h}^{\Gamma} imes \mathcal{V}_{h}^{\Gamma} \subset \mathcal{V}$$

#### semidiscrete problem

find 
$$\vec{u}_h \colon [0, T] \to \mathcal{V}_h$$
 s.t.

$$\left(\vec{\mathbf{v}}_{h} \mid \frac{\mathrm{d}}{\mathrm{d}t}\vec{u}_{h}(t)\right)_{\mathcal{H}} = \boldsymbol{s}\left(\vec{\mathbf{v}}_{h}, \vec{u}_{h}(t)\right) \qquad \forall \vec{\mathbf{v}}_{h} \in \mathcal{V}_{h} \qquad + \text{ i.c. in } \mathcal{V}_{h}$$

#### finite element spaces

•  $\mathcal{T}_h$  regular triangulation of  $\Omega$ •  $V_h^{\Omega} = \text{pcw. linear FEs over } \mathcal{T}_h$ •  $V_h^{\Gamma} = \gamma (V_h^{\Omega})$ 





1. split error with orthogonal projection  $\mathcal{P}_h \colon \mathcal{H} \to \mathcal{V}_h$ 

$$\vec{e} = \vec{u}_h - \vec{u} = \left(\vec{u}_h - \mathcal{P}_h \vec{u}\right) + \left(\mathcal{P}_h \vec{u} - \vec{u}\right) = \vec{e}_h + \vec{e}_{\mathcal{P}}$$

$$\left(\mathcal{P}_{h}ec{u}-ec{u}\,\middle|\,ec{v}_{h}
ight)_{\mathcal{H}}=0$$
 for all  $ec{v}_{h}\in\mathcal{V}_{h}$ 



1. split error with orthogonal projection  $\mathcal{P}_h \colon \mathcal{H} \to \mathcal{V}_h$ 

$$ec{e} = ec{u}_h - ec{u} = \left(ec{u}_h - \mathcal{P}_h ec{u}
ight) + \left(\mathcal{P}_h ec{u} - ec{u}
ight) = ec{e}_h + ec{e}_\mathcal{P}$$

2. equation for  $\vec{e}_h \in \mathcal{V}_h$ 

$$\begin{aligned} \left( \vec{v}_h \left| \frac{\mathrm{d}}{\mathrm{d}t} \vec{e}_h \right)_{\mathcal{H}} &= \left( \vec{v}_h \left| \frac{\mathrm{d}}{\mathrm{d}t} \vec{e}_h + \frac{\mathrm{d}}{\mathrm{d}t} \vec{e}_{\mathcal{P}} \right)_{\mathcal{H}} \right. \\ &= \left( \vec{v}_h \left| \frac{\mathrm{d}}{\mathrm{d}t} (\vec{u}_h - \vec{u}) \right)_{\mathcal{H}} \right. \\ &= s(\vec{v}_h, \vec{u}_h - \vec{u}) \\ &= s(\vec{v}_h, \vec{e}_h) + s(\vec{v}_h, \vec{e}_{\mathcal{P}}), \qquad \forall \vec{v}_h \in \mathcal{V}_h \end{aligned}$$

$$\left(\mathcal{P}_{h}ec{u}-ec{u}\,\middle|\,ec{v}_{h}
ight)_{\mathcal{H}}=0$$
 for all  $ec{v}_{h}\in\mathcal{V}_{h}$ 



1. split error with orthogonal projection  $\mathcal{P}_h \colon \mathcal{H} \to \mathcal{V}_h$ 

$$ec{e} = ec{u}_h - ec{u} = \left(ec{u}_h - \mathcal{P}_h ec{u}\right) + \left(\mathcal{P}_h ec{u} - ec{u}\right) = ec{e}_h + ec{e}_\mathcal{P}$$

2. equation for  $\vec{e}_h \in \mathcal{V}_h$ 

$$\begin{pmatrix} \vec{\mathbf{v}}_h \mid \frac{\mathrm{d}}{\mathrm{d}t} \vec{\mathbf{e}}_h \end{pmatrix}_{\mathcal{H}} = \left( \vec{\mathbf{v}}_h \mid \frac{\mathrm{d}}{\mathrm{d}t} \vec{\mathbf{e}}_h + \frac{\mathrm{d}}{\mathrm{d}t} \vec{\mathbf{e}}_{\mathcal{P}} \right)_{\mathcal{H}}$$

$$= \left( \vec{\mathbf{v}}_h \mid \frac{\mathrm{d}}{\mathrm{d}t} (\vec{u}_h - \vec{u}) \right)_{\mathcal{H}}$$

$$= s(\vec{\mathbf{v}}_h, \vec{u}_h - \vec{u})$$

$$= s(\vec{\mathbf{v}}_h, \vec{\mathbf{e}}_h) + s(\vec{\mathbf{v}}_h, \vec{\mathbf{e}}_{\mathcal{P}}), \qquad \forall \vec{\mathbf{v}}_h \in \mathcal{V}_h$$

3. set 
$$\vec{v}_h = \vec{e}_h$$
  
$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\vec{e}_h\|_{\mathcal{H}}^2 = s(\vec{e}_h, \vec{e}_h) + s(\vec{e}_h, \vec{e}_{\mathcal{P}}) \le C \|\vec{e}_h\|_{\mathcal{H}}^2 + s(\vec{e}_h, \vec{e}_{\mathcal{P}})$$

 $\left(\mathcal{P}_{h}ec{u}-ec{u}\,\big|\,ec{v}_{h}
ight)_{\mathcal{H}}=0$  for all  $ec{v}_{h}\in\mathcal{V}_{h}$ 



4. with  $\mathcal{P}_h$ -properties and standard FE approximation results

$$\begin{split} \left| s(\vec{e}_{h}, \vec{e}_{\mathcal{P}}) \right| &\leq C \left\| \vec{e}_{h} \right\|_{\mathcal{H}}^{2} + C \left( \left\| P_{0,\Omega} u_{t} - u_{t} \right\|_{1,\Omega}^{2} + \left\| P_{1,\Omega} u - u \right\|_{0,\Omega}^{2} \right) \\ &\leq C \left\| \vec{e}_{h} \right\|_{\mathcal{H}}^{2} + \widetilde{C} \left( \left| u_{t} \right|_{2,\Omega}, \left| u \right|_{2,\Omega} \right) h^{2} \end{split}$$

C and  $\widetilde{C}$  independent of h



4. with  $\mathcal{P}_h$ -properties and standard FE approximation results

$$\begin{split} |s(\vec{e}_{h},\vec{e}_{\mathcal{P}})| \leq & C \|\vec{e}_{h}\|_{\mathcal{H}}^{2} + C \left( \|P_{0,\Omega}u_{t} - u_{t}\|_{1,\Omega}^{2} + \|P_{1,\Omega}u - u\|_{0,\Omega}^{2} \right) \\ \leq & C \|\vec{e}_{h}\|_{\mathcal{H}}^{2} + \widetilde{C} \left( |u_{t}|_{2,\Omega}, |u|_{2,\Omega} \right) h^{2} \end{split}$$

C and  $\widetilde{C}$  independent of h

5. then

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\left\|\vec{e}_{h}\right\|_{\mathcal{H}}^{2} \leq C\left\|\vec{e}_{h}\right\|_{\mathcal{H}}^{2} + \widetilde{C}h^{2}$$



4. with  $\mathcal{P}_h$ -properties and standard FE approximation results

$$\begin{split} |s(\vec{e}_{h},\vec{e}_{\mathcal{P}})| \leq & C \|\vec{e}_{h}\|_{\mathcal{H}}^{2} + C \left( \|P_{0,\Omega}u_{t} - u_{t}\|_{1,\Omega}^{2} + \|P_{1,\Omega}u - u\|_{0,\Omega}^{2} \right) \\ \leq & C \|\vec{e}_{h}\|_{\mathcal{H}}^{2} + \widetilde{C} \left( |u_{t}|_{2,\Omega}, |u|_{2,\Omega} \right) h^{2} \end{split}$$

C and  $\widetilde{C}$  independent of h

5. then

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\vec{e}_{h}\|_{\mathcal{H}}^{2} \leq C\|\vec{e}_{h}\|_{\mathcal{H}}^{2} + \widetilde{C}h^{2}$$

6. apply Gronwall's lemma

 $\|ec{e}_h(t)\|_{\mathcal{H}} \leq Ch$ 



4. with  $\mathcal{P}_h$ -properties and standard FE approximation results

$$\begin{split} \left| s(\vec{e}_{h}, \vec{e}_{\mathcal{P}}) \right| \leq & C \left\| \vec{e}_{h} \right\|_{\mathcal{H}}^{2} + C \left( \| P_{0,\Omega} u_{t} - u_{t} \|_{1,\Omega}^{2} + \| P_{1,\Omega} u - u \|_{0,\Omega}^{2} \right) \\ \leq & C \left\| \vec{e}_{h} \right\|_{\mathcal{H}}^{2} + \widetilde{C} \left( \| u_{t} \|_{2,\Omega}, \| u \|_{2,\Omega} \right) h^{2} \end{split}$$

C and  $\widetilde{C}$  independent of h

5. then

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\vec{e}_h\|_{\mathcal{H}}^2 \leq C\|\vec{e}_h\|_{\mathcal{H}}^2 + \widetilde{C}h^2$$

6. apply Gronwall's lemma

$$\|ec{e}_h(t)\|_{\mathcal{H}} \leq Ch$$

7. consider full error

$$\|\vec{e}(t)\|_{\mathcal{H}} \le \|\vec{e}_{h}(t)\|_{\mathcal{H}} + \|\vec{e}_{\mathcal{P}}(t)\|_{\mathcal{H}} \le Ch$$



#### Theorem (H., Hochbruck 2015)

$$\vec{u} \in L^{\infty} \Big( [0, T]; H^{2}(\Omega) \times H^{1}(\Omega) \times H^{1}(\Gamma) \times H^{1}(\Gamma) \Big)$$
$$u_{t} \in L^{2} \Big( [0, T]; H^{2}(\Omega) \Big)$$
$$\|\vec{u}_{h}(t) - \vec{u}(t)\|_{\mathcal{H}} \leq Ch, \qquad t \in [0, T]$$

then

$$\| - \vec{u}(t) \|_{\mathcal{H}} \leq Ch, \qquad t \in [0, T]$$



#### Theorem (H., Hochbruck 2015)

$$\vec{u} \in L^{\infty}([0, T]; H^{2}(\Omega) \times H^{1}(\Omega) \times H^{1}(\Gamma) \times H^{1}(\Gamma))$$
$$u_{t} \in L^{2}([0, T]; H^{2}(\Omega))$$

 $\|\vec{u}_h(t) - \vec{u}(t)\|_{\mathcal{H}} \le Ch, \qquad t \in [0, T]$ 

then





method of lines gives stiff problem

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{M}_{h}\mathbf{u}(t) = \mathbf{S}_{h}\mathbf{u}(t)$$

with exact solution

$$\mathbf{u}(t) = \exp\left(t\,\mathbf{M}_h^{-1}\mathbf{S}_h\right)\mathbf{u}(0), \qquad t \geq 0$$



method of lines gives stiff problem

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{M}_{h}\mathbf{u}(t) = \mathbf{S}_{h}\mathbf{u}(t)$$

with exact solution

$$\mathbf{u}(t) = \exp\left(t\,\mathbf{M}_h^{-1}\mathbf{S}_h\right)\mathbf{u}(0), \qquad t \geq 0$$



method of lines gives stiff problem

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{M}_{h}\mathbf{u}(t) = \mathbf{S}_{h}\mathbf{u}(t)$$

with exact solution

$$\mathbf{u}(t) = \exp\left(t\,\mathbf{M}_h^{-1}\mathbf{S}_h\right)\mathbf{u}(0), \qquad t \geq 0$$

- 1. polynomial approximation
  - explicit time stepping schemes
  - direct approximation in Krylov subspaces



method of lines gives stiff problem

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{M}_{h}\mathbf{u}(t) = \mathbf{S}_{h}\mathbf{u}(t)$$

with exact solution

$$\mathbf{u}(t) = \exp\left(t\,\mathbf{M}_h^{-1}\mathbf{S}_h\right)\mathbf{u}(0), \qquad t \geq 0$$

- 1. polynomial approximation
  - explicit time stepping schemes
  - direct approximation in Krylov subspaces
- 2. rational approximation
  - implicit time stepping schemes
  - direct approximation with rational Krylov methods



method of lines gives stiff problem

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{M}_{h}\mathbf{u}(t) = \mathbf{S}_{h}\mathbf{u}(t)$$

with exact solution

$$\mathbf{u}(t) = \exp\left(t\,\mathbf{M}_h^{-1}\mathbf{S}_h\right)\mathbf{u}(0), \qquad t \geq 0$$

- 1. polynomial approximation
  - explicit time stepping schemes
  - direct approximation in Krylov subspaces
- 2. rational approximation
  - implicit time stepping schemes
  - direct approximation with rational Krylov methods
- 3. combinations of both

Outlook



evolution equation as boundary conditions, e.g.

$$\partial_t^2 u = c^2 \Delta u$$
 in  $\Omega$ 

$$\partial_t^2 \delta + c_{\Gamma} \Delta_{\Gamma} \delta = -\partial_t u \qquad \text{on } \Gamma$$
$$\partial_t \delta = \partial_{\nu} u \qquad \text{on } \Gamma$$

non-linear boundary conditions and coupling
 splitting methods for domain and boundary part

#### References





#### G.R. Goldstein

Derivation and physical interpretation of general boundary conditions Advances in Differential Equations, 4:457–480, 2006

- J.T. Beale, S.I. Rosencrans

#### Acoustic boundary conditions

Bulletin of the American Mathematical Society, 6:1276–1278, 1974

# J.T. Beale

Spectral properties of an acoustic boundary condition Indiana University Mathematics Journal, 9:895–917, 1976

C. Gal, G.R. Goldstein, J.A. Goldstein Oscillatory boundary conditions for acoustic wave equations Journal of Evolution Equations, 4:623-635, 2003