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example

design of concert hall
model walls as tiny springs
springs react to excess pressure

setting

bounded domain Ω ⊂ R2

boundary Γ = ∂Ω
u velocity potential
δ infinitesimal normal displ. of Γ
Γ not moving!
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Acoustic boundary conditions
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introduced in [Beale, Rosencrans ’74]
u : [0,T ]×Ω→ R

δ : [0,T ]× Γ→ R

wave equation with acoustic b.c.

u and δ are governed by:

∂2
t u = c2∆u in Ω

m∂2
t δ + kδ + dδ = −ρ∂tu on Γ

∂t δ = ∂νu on Γ
+ initial conditions for u, ∂tu, δ, ∂t δ

related to Wentzell boundary condition
[Gal, Goldstein, Goldstein ’03]
dynamic boundary condition
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energies of u

kinetic KE(u)=
1
2

∫
Ω

1
c2 |∂tu|2 dx

+
1
2

∫
Γ

λ |∂tu|2 dσ

potential PE(u)=
1
2

∫
Ω
|∇u|2 dx

+
1
2

∫
Γ

k |u|2 dσ

minimizing action functional S(u) =
∫ T

0 KE(u)− PE(u)dt

∂2
t u = c2∆u in Ω

∂νu = −λ∂2
t u− ku on Γ

kinetic boundary conditions
Robin and Neumann b.c. are contained
dynamic boundary condition for λ > 0

[G.R. Goldstein ’06] for details
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Neumann

∂νu = 0

Robin

∂νu + u = 0

kinetic

∂2
t u+ ku = −∂νu

acoustic

∂2
t δ+ kδ = −∂tu
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well-posedness of wave equation

∂2
t u = ∆u in Ω + i.c.

with Neumann b.c.

∂νu = 0 on Γ

with acoustic b.c.

∂2
t δ + kδ = −∂tu on Γ

as 1st order evolution equation

d
dt
~u(t) = A~u(t) + i.c.

with operator

A~u =

[
0 I
∆ 0

] [
u
ut

]
A~u =


ut
∆u
δt

−γ(ut )− kδ

 ~u =


u
ut
δ
δt
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(energy) Hilbert space

H = H1
c (Ω)× L2(Ω)×L2(Γ)× L2(Γ) = H

‖~u‖2
H =

1
2

∫
Ω
|∇u|2 + |ut |2 dx+

1
2

∫
Γ

k |δ|2 + |δt |2 dσ = ‖~u‖2
H

domain of operator

D(A) = {~u ∈ H | ∆u ∈ L2(Ω), ut ∈ H1(Ω), ∂νu = 0 on Γ}
D(A) = {~u ∈ H | ∆u ∈ L2(Ω), ut ∈ H1(Ω), ∂νu = δt on Γ}

Theorem ([Beale ’76, Thm. 2.1])

A closed, densely defined and skewadjoint in H

d
dt
~u(t) = A~u(t), ~u(0) = ~u0 ∈ D(A)

is well-posed and ‖~u‖H = const.
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method of lines

1. spatial discretization
2. numerical time integration of stiff ODE

difficulty: discretization of H1
c (Ω) = H1(Ω)/R

solution: choose H = H1(Ω)× L2(Ω)× L2(Γ)× L2(Γ)

‖~u‖2
H =

∫
Ω
|u|2 dx + ‖~u‖2

Hc

A : H ⊃ D(A)→ H not skewadjoint, but(
~v
∣∣∣ (A− 1

2 I
)
~v
)
H
≤ 0, ~v ∈ D(A)

Corollary

A : D(A)→ H is the infinitesimal generator of a C0-semigroup
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Variational formulation
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Green’s formula: ∆u ∈ L2(Ω), vt ∈ H1(Ω), ∂νu = δt(
~v
∣∣A~u)H = (v | ut )1,Ω + (vt |∆u)0,Ω

+ (kη | δt )0,Γ − (ηt | γut + kδ)0,Γ

= (v | ut )1,Ω− (∇vt | ∇u)0,Ω + (γvt | δt )0,Γ

+ (kη | δt )0,Γ − (ηt | γut + kδ)0,Γ =: s(~v ,~u)

s : V × V → R bilinear form on

V = H1(Ω)×H1(Ω)× L2(Γ)× L2(Γ)

⊃ D(A)

s(~v ,~v) ≤ 1
2 ‖~v‖

2
H for all ~v ∈ V

variational problem(
~v
∣∣∣ d

dt~u(t)
)
H
= s

(
~v ,~u(t)

)
∀~v ∈ V + i.c.
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V Ω
h ⊂ H1(Ω) and V Γ

h ⊂ L2(Γ) finite dim. subspaces with γ(V Ω
h ) ⊂ V Γ

h

construction
Vh = V Ω

h × V Ω
h × V Γ

h × V Γ
h ⊂ V

semidiscrete problem

find ~uh : [0,T ]→ Vh s.t.(
~vh | d

dt~uh(t)
)
H
= s

(
~vh,~uh(t)

)
∀~vh ∈ Vh + i.c. in Vh

finite element spaces

Th regular triangulation of Ω
V Ω

h = pcw. linear FEs over Th

V Γ
h = γ

(
V Ω

h

)
ΓΓ

ϕ
∣∣
Γ
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10 D. Hipp, M. Hochbruck - Numerical solution of the wave equation with acoustic boundary conditions

KIT

1. split error with orthogonal projection Ph : H → Vh

~e = ~uh −~u =
(
~uh −Ph~u

)
+
(
Ph~u−~u

)
= ~eh +~eP

2. equation for~eh ∈ Vh(
~vh

∣∣∣ d
dt~eh

)
H
=
(
~vh

∣∣∣ d
dt~eh +

d
dt~eP

)
H

=
(
~vh

∣∣∣ d
dt (~uh −~u)

)
H

= s
(
~vh,~uh −~u

)
= s

(
~vh,~eh

)
+ s
(
~vh,~eP

)
, ∀~vh ∈ Vh

3. set ~vh = ~eh

1
2

d
dt
‖~eh‖2

H = s
(
~eh,~eh

)
+ s
(
~eh,~eP

)
≤ C ‖~eh‖2

H + s
(
~eh,~eP

)

(
Ph~u−~u

∣∣~vh
)
H = 0 for all ~vh ∈ Vh
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4. with Ph-properties and standard FE approximation results∣∣s(~eh,~eP
)∣∣ ≤C ‖~eh‖2

H + C
(
‖P0,Ωut − ut‖2

1,Ω + ‖P1,Ωu− u‖2
0,Ω

)
≤C ‖~eh‖2

H + C̃
(
|ut |2,Ω , |u|2,Ω

)
h2

C and C̃ independent of h

5. then
1
2

d
dt
‖~eh‖2

H ≤ C ‖~eh‖2
H + C̃h2

6. apply Gronwall’s lemma

‖~eh(t)‖H ≤ Ch

7. consider full error

‖~e(t)‖H ≤ ‖~eh(t)‖H + ‖~eP (t)‖H ≤ Ch
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Theorem (H., Hochbruck 2015)

~u ∈ L∞
(
[0,T ];H2(Ω)×H1(Ω)×H1(Γ)×H1(Γ)

)
ut ∈ L2

(
[0,T ];H2(Ω)

)
then ‖~uh(t)−~u(t)‖H ≤ Ch, t ∈ [0,T ]

0.01 0.1

1

0.1

mesh parameter h

‖~eh‖H
O(h)
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method of lines gives stiff problem

d
dt

Mhu(t) = Shu(t)

with exact solution

u(t) = exp
(

t M−1
h Sh

)
u(0), t ≥ 0

options for approximation of u(t) are
1. polynomial approximation

explicit time stepping schemes
direct approximation in Krylov subspaces

2. rational approximation
implicit time stepping schemes
direct approximation with rational Krylov methods

3. combinations of both
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evolution equation as boundary conditions, e.g.

∂2
t u = c2∆u in Ω

∂2
t δ + cΓ∆Γδ = −∂tu on Γ

∂t δ = ∂νu on Γ

non-linear boundary conditions and coupling
splitting methods for domain and boundary part
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